採択課題 【詳細】
jh220009 | Hierarchical low-rank approximation methods on distributed memory and GPUs |
---|---|
課題代表者 | 横田理央(東京工業大学 学術国際情報センター) Rio Yokota |
概要 |
The purpose of this research is to develop a scalable and highly optimized open source library for hierarchical low-rank approximation of dense matrices. During the previous JHPCN project we have extended the H-matrix code to perform not only matrix-vector multiplications, but also matrix-matrix multiplication, LU factorization, and QR factorization.We have also extended the parallelization to support not only OpenMP and MPI, but also batched GPU kernels and task-based parallelization. The four main goals for the fiscal year 2022 are: 1) Application of H-matrix algorithm to the tridiagonalization during the eigenvalue solvers of dense matrices, 2) Extending the GPU implementation of H-matrices to make use of TensorCores, 3) Extending the O(N) H-matrix LU factorization to distributed memory, 4) Extending the O(N) H-matrix LU factorization to LDL factorization. We were able to achieve our research goal for all 4 objectives. This year's results were published in top journals like ACM TOMS and top conferences such as SC22. |
関連Webページ | |
報告書等 | 研究紹介ポスター / 最終報告書 |
業績一覧 | (1) 学術論文 (査読あり) |
該当なし | |
(2) 国際会議プロシーディングス (査読あり) | |
該当なし | |
(3) 国際会議発表(査読なし) | |
該当なし | |
(4) 国内会議発表(査読なし) | |
該当なし | |
(5) 公開したライブラリなど | |
該当なし | |
(6) その他(特許,プレスリリース,著書等) | |
該当なし |