学際大規模情報基盤共同利用・共同研究拠点

採択課題 【詳細】

jh220009 Hierarchical low-rank approximation methods on distributed memory and GPUs
課題代表者 横田理央(東京工業大学 学術国際情報センター)
Rio Yokota
概要

The purpose of this research is to develop a scalable and highly optimized open source library for hierarchical low-rank approximation of dense matrices. During the previous JHPCN project we have extended the H-matrix code to perform not only matrix-vector multiplications, but also matrix-matrix multiplication, LU factorization, and QR factorization.We have also extended the parallelization to support not only OpenMP and MPI, but also batched GPU kernels and task-based parallelization. The four main goals for the fiscal year 2022 are: 1) Application of H-matrix algorithm to the tridiagonalization during the eigenvalue solvers of dense matrices, 2) Extending the GPU implementation of H-matrices to make use of TensorCores, 3) Extending the O(N) H-matrix LU factorization to distributed memory, 4) Extending the O(N) H-matrix LU factorization to LDL factorization. We were able to achieve our research goal for all 4 objectives. This year's results were published in top journals like ACM TOMS and top conferences such as SC22.

関連Webページ
報告書等 研究紹介ポスター 最終報告書
業績一覧 (1) 学術論文 (査読あり)
該当なし
(2) 国際会議プロシーディングス (査読あり)
該当なし
(3) 国際会議発表(査読なし)
該当なし
(4) 国内会議発表(査読なし)
該当なし
(5) 公開したライブラリなど
該当なし
(6) その他(特許,プレスリリース,著書等)
該当なし
無断転載禁止