
1

jh220009

Hierarchical Low-Rank Approximation Methods on

Distributed Memory and GPUs

Rio Yokota（Tokyo Institute of Technology）

Abstract

The purpose of this research is to develop a scalable and highly optimized open source

library for hierarchical low-rank approximation of dense matrices. During the previous

JHPCN project we have extended the H-matrix code to perform not only matrix-vector

multiplications, but also matrix-matrix multiplication, LU factorization, and QR factoriza-

tion.We have also extended the parallelization to support not only OpenMP and MPI, but

also batched GPU kernels and task-based parallelization. The four main goals for the fis-

cal year 2022 are: 1) Application of H-matrix algorithm to the tridiagonalization during the

eigenvalue solvers of dense matrices, 2) Extending the GPU implementation of H-matrices to

make use of TensorCores, 3) Extending the O(N) H-matrix LU factorization to distributed

memory, 4) Extending the O(N) H-matrix LU factorization to LDL factorization. We were

able to achieve our research goal for all 4 objectives. This year’s results were published in

top journals like ACM TOMS and top conferences such as SC22.

1 Basic information

1.1 Collaborating JHPCN centers

• Hokkaido University

• The University of Tokyo

• Tokyo-tech

• Nagoya University

• Kyoto University

• Osaka University

1.2 Theme area

• Large-scale computational science

1.3 Research area

• Very large-scale numerical computation

1.4 Project members and their roles

Rio Yokota (Overall coordination)

Ichitaro Yamazaki (Overall advise)

Akihiro Ida (Lattice H-matrix)

Takeshi Iwashita (Electromagnetics App.)

Takeshi Fukaya (QR)

Satoshi Ohshima (GPU optimization)

Kengo Nakajima (Preconditioning)

Toshihiro Hanawa (GPU optimization)

Tetsuya Hoshino (GPU optimization)

Tasuku Hiraishi (MPI)

Hiroyuki Ootomo (TensorCore)

Sameer Deshmukh (PaRSEC)

Muhammad Ridwan Apriansyah (QR)

Qianxiang Ma (Algorithm)



Progress Report for JHPCN Joint Research of FY 2022 2

Thomas Spendlhofer (Iterative Refinement)

Sora Takashima (Generalization)

Xinyu Zhang (Modeling)

Tomoya Takahashi (I/O)

Kai Okawa (Visualization)

Sixue Wang (Fisher matrix)

Shukai Nakamura (CPU optimization)

Hiro Ishii (Hessian matrix)

Tomokazu Saito (FMM)

Ishikawa Satoki (Auto-tuning)

Shota Nakamura (MPI)

Wang Zhaoqing (GPU optimization)

Toshiki Omi (GPU optimization)

2 Purpose and Significance of the

Research

2.1 Purpose of Research

The purpose of this research is to develop

a scalable and highly optimized open source

library for structured low-rank approxima-

tion of dense matrices, e.g. H-matrix, H2-

matrix, HSS, HODLR, BLR. In this project

report we will simply call these various types

of structured low-rank approximations as H-

matrices. Such large dense matrices nat-

urally appear in electromagnetic, seismic,

quantum, and fluid simulations, in scientific

computing. Unlike their dense counterparts

which require O(N3) time and O(N2) mem-

ory, H-matrices can perform matrix multipli-

cation and factorization in O(N) time and

O(N) memory.

During the previous JHPCN project we

have extended the H-matrix code from

an O(N log2 N) method to a new O(N)

method for LU factorization of dense matri-

ces. We also benchmarked our implemen-

tation against other open source libraries

for H-matrices. Furthermore, we extended

the BLR QR factorization [1] to a full H-

matrix QR factorization. The present JH-

PCN project applies the H-matrix algorithm

to the tridiagonalization during the eigen-

value solvers of dense matrices, extends the

GPU implementation to make use of Tensor-

Cores, extends the O(N) LU factorization to

distributed memory, and extends the O(N)

LU factorization to LDL factorization.

2.2 Significance of Research

Hardware architecture is now moving to-

wards low-precision arithmetic, backed by

the increasing demand from the machine

learning field. When such low-accuracy can

be tolerated, exact dense linear algebra op-

erations become unnecessary, and libraries

such as BLAS and LAPACK, which are at

the heart of HPC applications, can be re-

placed by hierarchical low-rank (H-matrix)

libraries that effectively do the same work

in linear time. There is still ample room

for investigation regarding the use of such

low-precision in scientific computing appli-

cations, where methods such as iterative re-

finement have recently gained interest. H-

matrices can be used as a scalable precon-

ditioner for such problems, and we aim to

quantify the advantage over existing state-

of-the-art methods in this JHPCN project.

Furthermore, batched operations on GPUs

are becoming popular and libraries such as

MAGMA and cuBLAS are providing low-

level functions that can process many small

dense matrix operations in large batches.

H-matrices can benefit greatly from such



Progress Report for JHPCN Joint Research of FY 2022 3

batched dense linear algebra libraries, and in

doing so will be able to extract a large por-

tion of the performance of the latest GPU

and many-core architectures including Ten-

sor Cores. Since libraries like MAGMA and

CUBLAS are optimized to use Tensor Cores,

we do not have to do the implementation our-

selves.

3 Significance as JHPCN Joint

Research Project

Each member of this project has different ex-

pertise, all of which are essential for the de-

velopment and verification of a high perfor-

mance H-matrix library.

• R. Yokota’s group is currently devel-

oping a C++-based H-matrix code Ha-

trix that uses advanced C++ features to

provide a collection of primitives for per-

forming H-matrix computation with hy-

brid parallelism for MPI, OpenMP, and

CUDA over half of the project members

are students in his group.

• A. Ida and T. Iwashita are developers

of HACApK – a hybrid MPI-OpenMP-

CUDA implementation of the H-matrix.

• T. Hiraishi has experience in load-

balancing for distributed memory H-

matrix codes.

• I. Yamazaki is the developer of dense lin-

ear algebra libraries such as MAGMA

and PLASMA.

• S. Oshima, T. Hanawa and T. Hoshino

have expertise in tuning solvers for

GPUs and Xeon Phi.

• K. Nakajima has expertise in parallel

preconditioned iterative solvers.

The combination of these expertise is neces-

sary for achieving the goals mentioned above.

There are a few existing H-matrix implemen-

tations, but they are limited to shared mem-

ory and have not been ported to GPUs. To

our knowledge, HACApK and HiCMA are

the only multi-GPU H-matrix codes avail-

able at the moment. This could only have

been done through a JHPCN international

collaboration between the experts in each

area.

4 Outline of Research Achievements

up to FY2021 (Only for continuous

projects)

Up to FY2021 we have tackled various

problems regarding hierarchical low-rank ap-

proximation and its parallel implementation.

There are various derivatives of hierarchi-

cal low-rank approximation methods such

as; BLR, HODLR, HSS, H-matrix, and H2-

matrix. We started from the most basic

variant – BLR, which uses low-rank off-

diagonal blocks, but not a hierarchical ma-

trix. We started with the most basic op-

erations such as matrix-vector and matrix-

matrix multiplication. This was extended

during FY2016 to LU factorization and im-

plemented in OpenMP and MPI.

• In FY2017, we extended the matrix for-

mat to more complex HSS and H-matrix

structures, and extended the implemen-

tation to GPUs for the matrix-vector

multiplication. We utilized batched

MAGMA operations to process the



Progress Report for JHPCN Joint Research of FY 2022 4

matrix-vector multiplication efficiently

on GPUs.

• In FY2018, we further extended the im-

plementation of the LU factorization to

multiple-GPUs using a hybrid MPI +

OpenMP + CUDA code.

• In FY2019 we extended the H-matrix

code to H2-matrix by using a nested ba-

sis. We also used a runtime for H-LU on

GPU, but found that such runtimes like

StarPU and OmpSs incur too much over-

head. For the inner kernels, we ported

the QR decomposition to run on Tensor-

Cores, and implemented the QR decom-

position using the BLR matrix.

• In FY2020 we implemented the uni-

form basis BLR, and QR factorization on

TensorCores with error correction. We

also developed a Eigenvalue computa-

tion based on BLR-QR, and developed

a GPU implementation of the lattice H-

matrix.

• In FY2021 we improved the complexity

of theH2-matrix LU decomposition from

O(N log2 N) to O(N), compared various

runtime systems, benchmarked against

other libraries such as STRUMPACK

and LORAPO, and extended to LDL de-

composition.

5 Details of FY2022 Research

Achievements

The four main goals for the fiscal year 2022

are

1. Application of H-matrix algorithm to

the tridiagonalization during the eigen-

value solvers of dense matrices

2. Extending the GPU implementation of

H-matrices to make use of TensorCores

3. Extending the O(N) H-matrix LU fac-

torization to distributed memory

4. Extending the O(N) H-matrix LU fac-

torization to LDL factorization

We were able to complete all tasks. Task 1

was published in [4], task 2 has been submit-

ted to IJHPCA, task 3 has been published in

[7,8], task 4 has been submitted to ICPP2023

and its distributed memory implementation

to EuroMPI2023. Other publications in Sec-

tion 7 are results from previous years that

were published in FY2022.

5.1 Application of H-matrix algorithm to the

tridiagonalization during the eigenvalue

solvers of dense matrices

5.1.1 Research plan

Eigenvalue decomposition of dense matrices

are performed by libraries such as ELPA or

EigenExa. However, the dense matrix must

first be tridiagonalized before the eigende-

composition is performed. This tridiagonal-

ization can be done in O(N logN) time if

H-matrices are applied. During FY2022 1Q,

we will develop a novel algorithm for apply-

ing H-matrices during the tridiagonalization

phase of a dense eigenvalue decomposition.

5.1.2 Progress

We developed a fast tridiagonalization

method based on the block low rank (BLR)

structure, that reduces the complexity of the

tridiagonalization from O(N3) to O(N7/3)

[3]. Block Householder vectors are also

formed using BLR-matrices. The procedure



Progress Report for JHPCN Joint Research of FY 2022 5

Fig. 1 A block-divided dense matrix A is transformed into a block tridiagonal matrix B

using the block Householder transformation.

for forming a block tridiagonal structure is

shown in Fig. 1. In numerical experi-

ments of a string free vibration problem with

known analytical solutions, for large eigen-

values, the calculated eigenvalues using the

proposed method converge toward the ana-

lytical ones in accordance with the theoret-

ical convergence curves. Owing to the re-

duced complexity, an eigenvalue decomposi-

tion of a matrix was solved with about N =

300,000, which is significantly larger than the

limit of conventional methods for dense ma-

trices, within a reasonable amount of time

on CPU cores. For the calculation time, the

proposed method was faster than the conven-

tional method when the matrix size N was

larger than a few tens of thousands.

5.2 Extending the GPU implementation ofH-

matrices to make use of TensorCores

5.2.1 Research plan

In a separate JHPCN project we have de-

veloped an error correction algorithm that

recovers full single precision accuracy while

using TensorCores. Our results showed an

exact match between the accuracy of a pure

single precision computation and a compu-

tation on TensorCores with our error correc-

tion scheme[2]. Half precision is not usable in

most H-matrix computations, but with our

novel error correction scheme, we should be

able to make use of TensorCores during H-

matrix computations without loss of accu-

racy.

5.2.2 Progress

Until the first half of FY2022 we were plan-

ning to use Kokkos for implementing our H-

matrix code on GPUs. However, we had a al-

gorithmic breakthrough which allowed us to

make the LU/Cholesky factorization inher-

ently parallel, which we presented at SC22.

This new algorithm allows us to simply call

batched GPU kernels on Tensor Cores for

the three basic functions for LU factorization

GETRF, TRSM, and GEMM. This is much

more efficient than calling many GPU ker-

nels through Kokkos. Our code can scale up

to 128 GPUs and is about 10,000x faster than

the 2021 Gordon Bell finalist code LORAPO

as shown in Fig. 2.



Progress Report for JHPCN Joint Research of FY 2022 6

Fig. 2 Strong scaling experiments on

GPUs comparing our code with LORAPO.

5.3 Extending the O(N) H-matrix LU factor-

ization to distributed memory

5.3.1 Research plan

During FY2021 we have developed a novel

algorithm that can reduce the complexity of

H-matrix LU factorization to O(N). This

algorithm is also able to remove the data de-

pendency on the trailing matrices, which is a

huge problem when parallelizing LU factor-

ization of dense matrices. We will make use

of this feature to construct an embarrassingly

parallel dense LU factorization in distributed

memory.

5.3.2 Progress

Out of the various hierarchical low-rank ma-

trix formats such as H-matrix, H2-matrix,

HSS, HODLR, BLR, only HSS and H2-

matrices have O(N) complexity for LU fac-

torization. For HSS matrices, it is possible to

remove the dependency on the trailing matri-

ces during LU factorization, which results in

a highly parallel algorithm. This allows the

LU factorization to be performed in an em-

barrassingly parallel fashion. However, the

64 512 4096
Cores

10−1

100

101

102

103

104

Ti
m

e 
(s

)

OUR CODE N=119264
OUR CODE N=954112
LORAPO N=119264
LORAPO N=954112
IDEAL SCALE

Fig. 3 Strong scaling experiments on

CPUs comparing our code with LORAPO.

weak admissibility of HSS causes the rank of

off-diagonal blocks to grow for 3-D problems,

and the method is no longer O(N). On the

other hand, the strong admissibility of H2-

matrices allows it to handle 3-D problems in

O(N), but introduces a dependency on the

trailing matrices. In the present work, we

pre-compute the fill-ins and integrate them

into the shared basis, which allows us to

remove the dependency on trailing-matrices

even for H2-matrices. Comparisons with a

block low-rank factorization code LORAPO

showed a maximum speed up of 4,700x for a

3-D problem with complex geometry [7].

5.4 Extending the O(N) H-matrix LU factor-

ization to LDL factorization

5.4.1 Research plan

Applications in electronic structure calcu-

lation require the computation of the k-th

eigenvalue, where the value or range of the

eigenvalue is not known a priori. A common

method for solving such a problem is to per-

form a binary search though successive LDL

factorizations. Electronic structure calcula-



Progress Report for JHPCN Joint Research of FY 2022 7

tions result in dense matrices, so a method

which can compute an LDL factorization of

a dense matrix in O(N) will greatly reduce

the computation time of such calculations.

In FY2022 4Q , we will develop such an algo-

rithm. The overall complexity of the binary

search will be O(N logN), since we need

to perform the LDL factorization O(logN)

times.

5.4.2 Progress

We have extended the O(N) H-matrix LU

factorization in task 3 to LDL factorization,

which was quite trivial due to the similarity

of the matrix operations in LU and LDL fac-

torizations. We applied this to a electronic

structure calculation that requires the com-

putation of the k-th eigenvalue. The LDL

factorization is performed recursively during

the binary search to find the k-th eigenvalue.

We confirmed that the accuracy of the re-

sulting eigenvalue matched that of a dense

O(N3) eigenvalue solver, while the complex-

ity was reduced to O(N logN). This dras-

tic improvement in computational complex-

ity will allow us to scale such dense eigenvalue

computations in electronic structure calcula-

tions to orders of millions or even billions.

6 Self-review of Current Progress and

Future Prospects

The four main goals for the fiscal year 2022

are

1. Application of H-matrix algorithm to

the tridiagonalization during the eigen-

value solvers of dense matrices

2. Extending the GPU implementation of

H-matrices to make use of TensorCores

3. Extending the O(N) H-matrix LU fac-

torization to distributed memory

4. Extending the O(N) H-matrix LU fac-

torization to LDL factorization

For (1), owing to the reduced complex-

ity, an eigenvalue decomposition of a matrix

was solved with about N = 300,000, which is

significantly larger than the limit of conven-

tional methods for dense matrices [4].

For (2), our novelH2-ULV factorization al-

gorithm and batched GPU implementation

can scale up to 128 GPUs and is about

10,000x faster than the 2021 Gordon Bell fi-

nalist code LORAPO. This work has been

submitted to IJHPCA.

For (3), the H2-ULV factorization algo-

rithm on distributed memory is about 4,700x

faster than the 2021 Gordon Bell finalist code

LORAPO. This work was accepted to SC22

[7].

For (4), we have successfully developed a

H-matrix LDL decomposition, and used it

while slicing the spectrum using a binary

search to obtain the nth eigenvalue of a dense

matrix in O(N logN) time.

7 List of publications and

presentations

Journal Papers (Refereed)

1. S. Deshmukh, Rio Yokota, George

Bosilca, “Cache Optimization and Per-

formance Modeling of Batched, Small,

and Rectangular Matrix Multiplication

on Intel, AMD, and Fujitsu Processors”,

ACM Transactions on Mathematical



Progress Report for JHPCN Joint Research of FY 2022 8

Software, 2023.

2. M. R. Apriansyah, R. Yokota,

“QR Decomposition of Block Low-

Rank Matrices”, ACM Transac-

tions on Mathematical Software,

https://doi.org/10.1145/3538647

(2022).

3. H. Ootomo, R. Yokota, “Recovering

Single Precision Accuracy from Ten-

sor Cores While Surpassing the FP32

Theoretical Peak Performance”, The In-

ternational Journal of High Performance

Computing Application, Vol. 26, No. 4,

https://doi.org/10.1177/10943420221090256

(2022).

4. A. Ida, “Solving Block Low-Rank Matrix

Eigenvalue Problems”, Journal of Infor-

mation Processing,Vol. 30, pp.538-551

(2022).

Proceedings of International Conference Papers

(Refereed)

5. H. Ootomo, Rio Yokota, Mixed-

Precision Random Projection for

RandNLA on Tensor Cores, Platform

for Advanced Scientific Computing

(PASC), Jun. 2023.

6. H. Ootomo, H. Manabe, K. Harada,

R. Yokota, Quantum Circuit Simulation

by SGEMM Emulation on Tensor Cores

and Automatic Precision Selection, ISC

High Performance, May 2023.

7. Q. Ma, S. Deshmukh, R. Yokota, Scal-

able Linear Time Dense Direct Solver

for 3-D Problems Without Trailing Sub-

Matrix Dependencies, The International

Conference for High Performance Com-

puting, Networking, Storage, and Anal-

ysis (SC22), Nov. 2022.

Presentations at International conference

(Non-refereed)

8. Q. Ma, R Yokota, O(N) Factorization

of Dense Matrices on GPUs Without

Trailing Submatrix Dependencies, SIAM

CSE, Feb. 2023.

9. M. R. Apriansyah, R. Yokota, Parallel

QR Factorization of Block Low-Rank

Matrices, SIAM CSE, Feb. 2023.

10. H. Ootomo, R. Yokota, Reducing Shared

Memory Footprint to Leverage High

Throughput on Tensor Cores and its

Flexible API Extension Library, HPC

Asia, Feb. 2023.

11. S. Ohshima, A. Ida, R. Yokota and I.

Yamazaki(+), QR Factorization of Block

Low-Rank Matrices on Multi-Instance

GPU, The 23rd International Confer-

ence on Parallel and Distributed Com-

puting, Applications and Technologies

(PDCAT’22), Dec. 2022.


