採択課題 【詳細】
| jh250072 | 機械学習駆動のマルチスケールシミュレーションによるグリーン触媒設計 |
|---|---|
| 課題代表者 | 森川良忠(大阪大学 大学院工学研究科) Yoshitada Morikawa (Osaka University, Graduate School of Engineering) |
| 概要 | This research aims to develop Machine Learning Interatomic Potentials (MLIPs) integrated with multi-scale simulations to optimally design the heterogeneous catalysts, focusing on CO2 hydrogenation to methanol. By leveraging machine-learning aided atomic simulations, it addresses not only static but also dynamic catalytic properties to optimize catalyst performance under realistic operating conditions. |
| 関連Webページ | |
| 報告書等 | 研究紹介ポスター / 最終報告書 |
| 業績一覧 | (1) 学術論文 (査読あり) |
| [] Halim, H.H., Fadhlan, M. F., Morikawa, Y. et al. Bridging the Pressure Gap in Hydrogenation of CO2 to Formate on Cu(100) by Machine-learning-aided Multiscale Simulations. Under peer review in Journal of the American Chemical Society. | |
| (2) 国際会議プロシーディングス (査読あり) | |
| 該当なし | |
| (3) 国際会議発表(査読なし) | |
| 該当なし | |
| (4) 国内会議発表(査読なし) | |
| [] Anshor, M. F., Halim, H. H., and Morikawa, Y. CO co-adsorption effects on water -gas-shift reaction over Cu clusters on Cu(111): insights from machine-learning force-fields and microkinetic modelling. The annual meeting of the Physical Society of Japan, Hiroshima, September 2025. | |
| [] Halim, H.H., Fadhlan, M. F., Morikawa, Y. et al. Bridging the Pressure Gap in Hydrogenation of CO2 to Formate on Cu(100) by Machine-learning-aided Multiscale Simulations. The annual meeting of the Japan Physical Society, Hiroshima, September 2025. | |
| (5) 公開したライブラリなど | |
| 該当なし | |
| (6) その他(特許,プレスリリース,著書等) | |
| 該当なし |
無断転載禁止








