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A. OVERVIEW

The simulations combines physics,
chemistry, material science, chemical
engineering, and data science.

Machine learning is used as a bridge
between the first-principles calculations
and higher scale simulations.

Multi-scale simulation enable big
length-scale and long time-scale
with first-principles accuracy.

Atomic-level description of non-equilibrium
states of catalysis are investigated by machine
learning aided-atomic simulations.

B. BACKGROUND B. BACKGROUND (continued)
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The challenge of the non-equilibrium states of catalysis

I—> Surface Evolution ﬁ Simulation tools

“Dynamics of “The alloying
surface defect” effect”

Catalysis is chemical reactions facilitated by
external material known as “catalyst”.
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Better understanding in catalysis well contributes in energy & environments. || Objective: elucidate the behavior of catalysis at non-equilibrium states

** The Research Plan in Elucidating Non-equilibrium States
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*¢* Machine Learning Aided Multi-scale Simulation

Launch First Multi-
scale simulations

1. Run MD and kMC
Simulations based on
MLIP

2. Perform path
sampling to capture
rare key events.

Build Generative
models

1. Predefined
properties used in
objective function.

DET Calculation 1 Machine Learning Force Field I
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1. Use Gaussian
Process (GP)

2. Run active learning w
scheme to generate
more structures
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2. Optimize generative
model to generate the
target material.

High scale simulation

New positions

v First-principles level of accuracy € All adsorbates present in the methanol synthesis are included: CO,, CO, HCO,CHO, HCOO, etc..

v Efficient for large system and long time scale |

C. METHODOLOGY & PRELIMINARY (PUBLISHED) RESULTS

Validation >

Continuous PES function

*¢* Constructing Machine Learning Force Field *** Preliminary Results

#1 The MLMD simulations of CO-induced formation of Cu clusters
Halim, H. H.; Ueda, R.; Morikawa, Y. J. Phys. Condens. Matter 2023, 35 (49), 495001.

» The simulations at 450 K to 550 K show Cu clusters are formed within a hundred of ns
when the Cu surface is exposed with CO, significantly alter the catalyst activity.
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*** Regression in Machine Learning by Artificial Neural Network

ALGORITHM
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Calc. output based on W

[ Compute Error ]

Based on error function | { k \
: YT ‘ 20080 BE2T 00000299800 0w
: L& ol | YL I B Y RTY XY
[ Backpropagation ] | AT P ,“,', sallak, o
.,3.‘;4.*.5 L LS e tal s’-’x.'(

Finding gradients |

->[ Update parameters ]— |

Iterative opt. algorithm

DY I TN L9t X

3 3 3
y(x,w) = Z o z wy ;h (Z wh(wOx + b)Y + bj@))
= =i =1

¢ The Implementation of Machine Learning Molecular Dynamics |
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Analyze the non-equilibrium states

| #2 The Digital Twin of the CO, Hydrogenation on Cu Surfaces

» A precise digital twin of catalysis enables inverse catalyst design in the digital world
(i.e., simulations), which can then be transferred to the real world (i.e., experiments).
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» Elucidate the reaction networks Molecular Dynamics (MLMD)

> Search most effective active sites
Q Measure thg:- reaction rates, etc. j

Get trajectories of atoms :
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D. ONGOING WORK & FUTURE PLAN

Improve the database to include the other species relevant to methanol synthesis: CO,, HCOO, HCOOH, CH;0H, H,0, etc.

o’
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Perform long-time and large-scale MLMD simulations to provide explicit “molecular movie” of the catalysis.

e

0

Connect the MLMD to higher scale simulations such as Kinetic Monte Carlo to enable better comparison to experiments.

o

Design a new catalyst for the methanol synthesis based on the inverse-design and knowledge obtained from the digital twin.




