採択課題 【詳細】
jh250017 | 次世代災害対応のための視覚言語モデルの構築 |
---|---|
課題代表者 | 横矢直人(東京大学大学院新領域創成科学研究科) Naoto Yokoya (Graduate School of Frontier Sciences, The University of Tokyo) |
概要 | Sudden-onset disasters occur frequently worldwide, posing a serious threat to human life and property safety. In the last few decades, natural disasters, i.e., earthquakes and storms to floods and droughts kill approximately 40,000 to 50,000 people per year. For effective humanitarian assistance and disaster response, we plan to leverage earth observation and artificial intelligence techniques, developing cutting-edge disaster vision-language models for macro-level damage assessment and micro-level analysis of disaster-bearing bodies. We believe our developed vision-language models as well as constructed multi-modal datasets could provide a solid benchmark that promotes rapid disaster response. |
関連Webページ | |
報告書等 | 研究紹介ポスター / 最終報告書 |
業績一覧 | (1) 学術論文 (査読あり) |
該当なし | |
(2) 国際会議プロシーディングス (査読あり) | |
該当なし | |
(3) 国際会議発表(査読なし) | |
該当なし | |
(4) 国内会議発表(査読なし) | |
該当なし | |
(5) 公開したライブラリなど | |
該当なし | |
(6) その他(特許,プレスリリース,著書等) | |
該当なし |
無断転載禁止