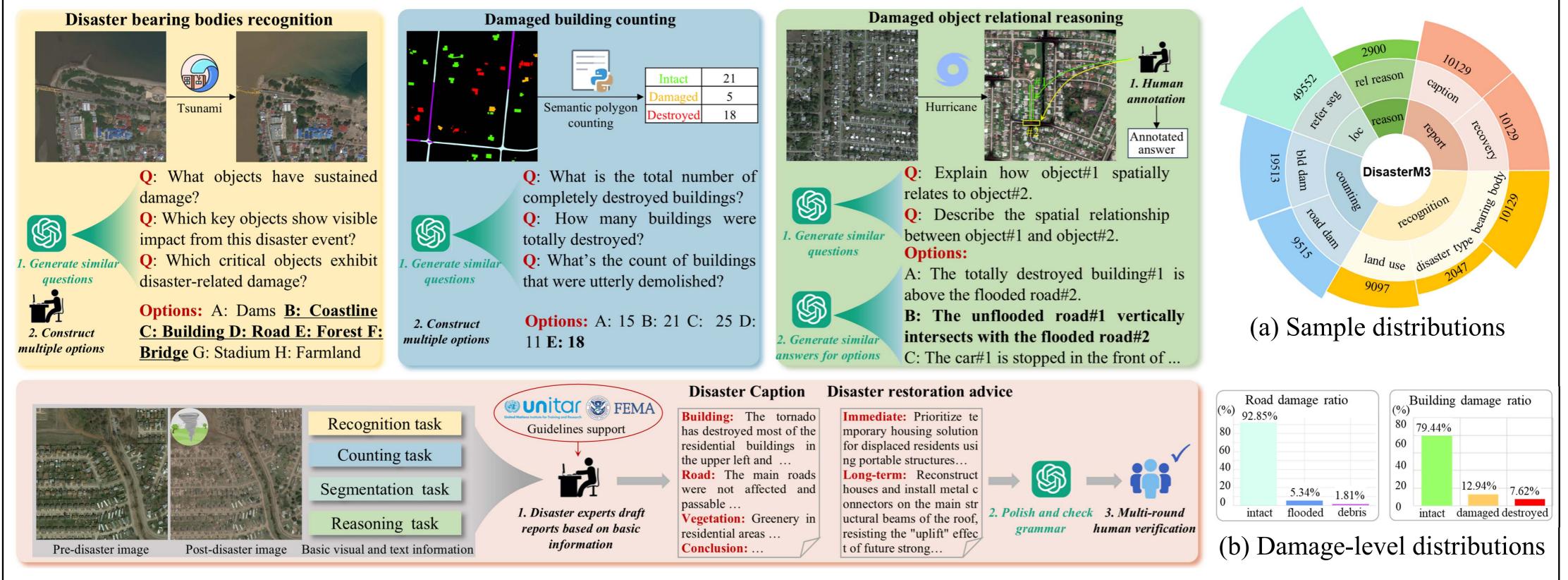

次世代災害対応のための視覚言語モデルの構築


Naoto Yokoya, Junjue Wang, Weihao Xuan Graduate School of Frontier Sciences, The University of Tokyo

Research Plan

Goal1: Curate a large-scale vision-language dataset for disaster damage assessment and response. Done Step1.1: Construct a semi-automatic pipeline for high-quality annotation. Step1.2: Benchmark open-source and commercial vision-language models disaster response. – $\mathbf{\Sigma}$ Ongoing Future plan **Goal2:** Develop a disaster assistant for conversation-based disaster response.

DisasterM3: Multi-hazard, multi-sensor, multi-task vision language dataset

Preliminary Experiments

Method	Accuracy (%)								Disaster Caption				Restoratio	on Advic	e	
	AVG	LUC	DTR	BBD	BDC	DRE	ORR	AVG	DAP	DDR	FC	AVG	RNR	APP	SC	Domain gap for disaster scenarios.
Random Guess	-	-	20	-	20	20	20	-	-	-	-	-	-	-	-	Existing VLMs show significant domain
 Open-source models 																e e
LLaVA-1.5-7B [19]	12.1	4.2	-	-	-	-	20.0	-	-	-	-	-	-	-	-	gaps when processing disaster scenes,
LLaVA-OV-7B [17]	24.5	16.3	53.5	3.7	26.4	24.2	22.7	1.66	1.50	1.53	1.93	2.30	3.01	2.08	1.81	limiting their performance.
Kimi-VL-A3B-Instruct [35]	25.6	28.9	66.3	4.0	20.4	15.0	18.9	1.69	1.53	1.72	1.81	2.67	3.57	2.40	2.05	mining men performance.
Kimi-VL-A3B-Think [35]	26.7	27.0	51.6	7.4	24.4	25.4	24.4	1.61	1.39	1.68	1.75	2.61	3.35	2.34	2.15	
InternVL3-8B [53]	31.3	39.6	53.5	4.0	30.3	24.1	36.2	1.96	1.88	1.92	2.09	2.75	3.52	2.53	2.21	
InternVL3-14B [53]	35.7	42.5	62.0	4.9	27.4	23.6	54.1	2.08	2.01	2.01	2.22	2.86	3.67	2.62	2.29	
InternVL3-78B [53]	39.3	43.5	72.5	5.3	29.4	28.7	<u>56.1</u>	2.79	2.74	2.75	2.89	2.90	3.64	2.64	2.43	Larger VLMs achieve higher
Qwen2.5-VL-3B [3]	26.2	30.8	56.1	5.7	29.9	21.2	13.8	1.00	0.83	1.05	1.12	2.15	2.98	1.77	1.71	performances. Scaling laws hold for
Qwen2.5-VL-7B [3]	31.2	28.3	66.6	4.7	34.2	29.3	23.9	1.75	1.69	1.71	1.85	1.95	2.53	1.83	1.49	performances. Scalling laws hold for
Qwen2.5-VL-32B [3]	35.3	36.7	54.7	11.6	33.2	30.9	44.8	1.55	1.42	1.52	1.72	2.96	3.63	2.71	2.55	VLMs: larger models perform better.
Qwen2.5-VL-72B [3]	40.5	47.0	74.8	6.8	34.8	28.9	50.8	2.01	1.99	2.00	2.05	2.92	3.79	2.70	2.27	\mathcal{E} 1
GeoChat-7B [14]	10.7	6.1	-	-	-	-	15.3	-	-	-	-	-	-	-	-	Commercial models excel due to massive
TeoChat-7B [13]	23.0	6.9	64.9	2.0	22.5	23.3	18.2	1.77	1.61	1.74	1.96	1.95	2.59	1.77	1.49	
EarthDial-4B [34]	22.9	10.6	58.1	3.2	30.2	20.8	14.5	1.53	1.22	1.64	1.73	2.42	3.21	2.08	1.98	training data.
 Commercial models 																
GPT40 [12]	39.3	49.4	80.5	10.6	24.2	21.4	49.8	2.27	2.25	2.28	2.28	<u>3.19</u>	3.92	<u>2.95</u>	2.69	
GPT4.1 [12]	42.3	52.4	79.6	7.2	25.5	25.0	64.0	2.57	2.60	2.58	2.54	3.14	3.94	2.93	2.56	Fine-tuned models improve
 Fine-tuned models 																
Qwen2.5-VL-7B [3]	40.4	37.7	83.6	<u>21.5</u>	<u>34.3</u>	<u>29.4</u>	36.2	3.90	3.76	3.53	4.41	3.11	3.73	2.88	<u>2.73</u>	comprehensively. DisasterM3 fine-
Δ	19.2	11111111111111111111111111111111111111	↑17.0	†16.8	$\uparrow 0.1$	$\uparrow 0.1$	↑12.3	↑2.15	↑2.07	$^{1.82}$	$^{12.56}$	↑1.26	<u>↑1.20</u>	↑1.83	1.24	tuning significantly improves VLM
InternVL3-8B [53]	<u>41.7</u>	42.6	79.3	23.9	29.1	24.9	50.6	<u>3.83</u>	<u>3.69</u>	3.49	<u>4.32</u>	3.31	3.92	3.10	2.90	
Δ	↑10.4	↑3.0	↑25.8	↑19.9	↓-1.2	↑0.8	↑14.4	↑1.87	↑1.81	↑1.57	↑2.23	↑0.56	↑0.40	↑0.57	↑0.69	performance and narrows domain gaps.
- · · · /	adopted accuracy(%) for the multiple choice tasks, i.e., disaster scene recognition(DSR), disaster type recognition (DTR), bearing body recognition(BBR), aged building counting (DBC), damaged road estimation (DRE), and object relational reasoning (ORR). The open-ended tasks are scored using GPT4.1 on													Disaster-specific terminology enhances		

report quality.

UTokyo

damaged building counting (DBC), damaged road estimation (DRE), and object relational reasoning (ORR). The open-ended tasks are scored using GPT4.1 on a scale of 5 points. Disaster caption is measured from damage assessment precision (DAP), damage detail recall (DDR), and factual correctness (FC). Restoration advice is measured from recovery necessity (RN), strategic completeness(SC), and action priority precision (APP). The average accuracy (AVG) denotes the overall performance.

Junjue Wang, Weihao Xuan, Heli Qi, Zhihao Liu, Kunyi Liu, Yuhan Wu, Hongruixuan Chen, Jian Song, Junshi Xia, Zhuo Zheng, Naoto Yokoya. DisasterM3: A Remote Sensing Vision-Language Dataset for Disaster Damage Assessment and Response[J]. arXiv preprint arXiv:2505.21089, 2025.