採択課題 【詳細】
| jh230040 | 大規模拡散モデルを用いたテキスト生成 |
|---|---|
| 課題代表者 | Li Zihui(東京大学情報基盤センター・データ科学研究部門 ) Li Zihui (The University of Tokyo, Information Technology Center) |
| 概要 |
This research project investigates the integration of diffusion models into natural language processing (NLP), building on their success in computer vision. We explore incorporating diffusion methods into existing auto-regressive models and compare text generation with Large Language Models (LLMs). Our findings show that diffusion models are not superior to Transformer-based models. We assess the proficiency of LLMs in generating survey articles for NLP, focusing on 99 topics. Automated benchmarks indicate that GPT-4 outperforms GPT-3.5, PaLM2, and LLaMa2 by 2% to 20%. While GPT-created surveys are more contemporary and accessible, GPT-4 occasionally misses details or includes factual errors. We also found systematic bias in GPT-based evaluations compared to human evaluations. |
| 関連Webページ | |
| 報告書等 | 研究紹介ポスター / 最終報告書 |
| 業績一覧 | (1) 学術論文 (査読あり) |
| 該当なし | |
| (2) 国際会議プロシーディングス (査読あり) | |
| 該当なし | |
| (3) 国際会議発表(査読なし) | |
| 該当なし | |
| (4) 国内会議発表(査読なし) | |
| 該当なし | |
| (5) 公開したライブラリなど | |
| 該当なし | |
| (6) その他(特許,プレスリリース,著書等) | |
| 該当なし |








