11-NA15

環オホーツク圏を中心とした大気・海洋シミュレーション

中村知裕(北海道大学)

概要 環オホーツク圏では、オホーツク海起源の海洋熱塩循環・潮汐混合・栄養物質(特 に鉄)循環に伴い、世界でも最大規模の基礎生産が生じ、豊富な水産資源や炭素循環に 影響している。また、夏季の下層雲やオホーツク海高気圧の形成等を介して北日本の気 候に影響を与えている。最近ではこれらに長期変動が生じていることも明らかになって きた。本研究では、こうした現象の理解と数値モデルによる再現性の向上に向け、環オ ホーツク圏の大気・海洋シミュレーションと使用する数値モデルの高速化チューニング を行う。本年度は、先ず(I)計算機科学分野の課題として、大気モデルを水平2方向に MPI 並列処理を行い SR16000 での性能テストを行った。次に(II)環オホーツク圏大気・ 海洋シミュレーションとして、(a)海洋内鉄循環シミュレーションと各種パラメタへの 感度実験、(b) 潮汐による鉛直混合過程の数値実験、(c) オホーツク海高気圧の強い年と 弱い年の夏季下層雲シミュレーションとその比較、を行った。

研究の目的と意義

研究の目的

環オホーツク圏(オホーツク海とその周辺地域) は、季節変動や気候変動に顕著な特徴を持ち、日 本とりわけ北日本の気候に大きな影響を与えてい る。例えば夏季には、オホーツク海周辺では下層 雲(高度の低い雲)や霧が頻繁に形成される。下 層雲は、日射を遮り赤外線を放射することで大気 -海洋間あるいは大気-陸面間の熱・水フラック スに大きく影響する[中村・古関, 2010]。その結 果、下層雲の下では気温が低下し、これが顕著に なると農作物の不作の原因となる。一方冬季には、 シベリア東部は北半球の寒極(気温の最も低い地 域)となり、そこから吹き出す寒気によりオホー ツク海では大規模な海氷生成が起こる。

オホーツク海における海氷生成は北海道沿岸の 気候や産業に影響するだけでなく、北太平洋ほぼ 全域の海洋中層循環に影響を与えている。海氷生 成の際には、海水が結氷点まで冷却される上に、 海水が凍る際に不純物として塩が排出されるため、 れているが、海水には極めて溶けにくいため多く 高密度の海水が生成される。生成された高密度水 はオホーツク海そして北太平洋の中層に広がる。

また、千島列島域のように海底地形上を強い潮 流が流れる海域では、内部重力波の生成と砕波に より激しい鉛直混合が生じる「Nakamura et al., 2000;2010]。これらの高密度水生成と千島列島域 な数年から数十年規模の変動を持つのに加えて、

での潮汐鉛直混合により、オホーツク海起源の熱 塩循環(密度差に由来し、鉛直方向の輸送で特徴 付けられる海洋循環)が駆動される [Nakamura et al., 2006]。熱塩循環に伴い、大気に接していた 海水が海洋中層に潜り込むので、大気中の酸素、 温室効果気体 (二酸化炭素など)、フロンといった 様々な気体が北太平洋中層に取り込まれ、それら 物質の循環に影響する「Uchimoto et al., 2011; 2009]

環オホーツク圏はまた、世界最大規模の基礎生 産(海洋植物プランクトン増殖)で知られている。 高い基礎生産は、食物連鎖を通し豊富な水産資源 の基礎となるとともに、二酸化炭素の海洋内貯留 など炭素循環にも重要な役割を果たす。この高い 基礎生産を支える上で、上述の熱塩循環によりア ムール川から運ばれて来た「鉄」が重要であるこ とが最近の研究から分かってきた [Nishioka et al., 2007]。すなわち、鉄は2価と3価のイオン を持つことから光合成等における電子伝達に使わ の海域において基礎生産を律速している。例外的 に環オホーツク圏では、熱塩循環に伴う鉄供給の おかげで鉄律速がかかりづらく、このことが水産 資源の豊さに繋がっている。

環オホーツク圏におけるこれらの現象は、顕著

シベリアを中心に顕著な温暖化が進行している。 温暖化の特に著しい地域では、平均して10年間に がロシア領ないしロシア経済水域に含まれている 2℃のペースで冬季の気温が上昇している。温暖化 に伴うようにオホーツク海の海氷面積も減少傾向 にあることから、上述のオホーツク海起源の熱塩 循環が弱まっていく可能性が危惧されている [Nakanowatari et al., 2007; Matsuda et al., 2009]。

このように、環オホーツク圏では科学的に興味 深くかつ社会的に重要な気候・環境の形成および それらの長期変動が生じており、これらのより良 い理解と数値シミュレーションによる再現・予測 が求められている。そこで代表者らのグループで は、環オホーツク圏の気候および環境変動のより 良い理解のために、環オホーツク圏を対象とした 海洋および大気の数値シミュレーションを行って いる。本研究ではその一環として、環オホーツク 圏の気候・環境に重要な3つの現象—(a) オホー ツク海を起源とする栄養物質循環と熱塩循環、(b) 潮汐による鉛直混合過程、(c)オホーツク海周辺 の下層雲一について数値シミュレーション研究を 行う。加えて、これらシミュレーションの効率化 と大規模化に向けて、大型計算機更新後の新シス テムへの移植と新システムでの高速化チューニン グを検討する。

研究の意義

現在気候・現在環境のシミュレーションとそれ らの形成・変動メカニズム解明は、地球温暖化に 伴う環オホーツク圏の変化の理解および信頼性の 高い予測の必要条件である。中でも、環オホーツ ク圏では近年表層の栄養物質そして基礎生産が減 少傾向にあり、温暖化がその主な原因ではないか と示唆されている。もしこの示唆が正しければ、 温暖化が進むと基礎生産がさらに減少し、ひいて は水産資源・炭素循環も大きく影響を受けること から、先行きが懸念されている。本研究の成果は、 こうした変動の要因解明と予測の重要な基礎とな る。

にとって重要な地域である。しかしながら、大半 ため、大気・海洋・陸面全てにおいて公開されて いる観測データが限られている。また、基礎生産 に重要な鉄は、海水中に比べ観測船内の方が遙か に量が多いため観測には特殊な技術を要するので 断片的知識しか得られていない。そのため環オホ ーツク圏の気候・環境研究には、数値シミュレー ションとそれに基づくメカニズム解明、そして解 明されたメカニズムに基づく数値シミュレーショ ンの改良が欠かせない。

当拠点公募型共同研究として実施した意義

- (1) 共同研究を実施した大学名と研究体制 北海道大学
- (2) 共同研究分野

超大規数値計算系応用分野

(3) 当公募型共同研究ならではという事項など

本共同研究により、計算科学の専門家と共同研 究を行えたことが本事項の第一である。このこと は、数値モデルの高速化および、北海道大学情報 基盤センターの大型計算機システム更新後の新シ ステムへの移行、新システムでの高速化チューニ ングで特に顕著であった。

また、北海道大学情報基盤センターの大型計算 機システムを使用させて戴くことで、数値シミュ レーションとその結果の解析を円滑に且つ高速に 実施できるのも当共同研究の利点である。

加えて、JHPCN シンポジウムにおいて他分野の 計算科学に関する専門家と交流し、その研究発表 を拝聴できることは、当共同研究以外ではなかな か得られない機会であった。

3. 研究成果の詳細と当初計画の達成状況

(1)研究成果の詳細について

計算機科学分野での検討課題

本課題では、昨年度に SMP 並列をチューニング した大気モデルの MPI 並列化、および北海道大学 情報基盤センター大型計算機システム更新後の新 対象とする環オホーツク圏は上述のように日本 システムでの高速化チューニングを行った。

本研究で使用している領域大気モデル(IPRC 領 域気候モデル)は、図 1a に示すように南北方向(以 下 i 方向)に MPI 並列処理されている。SR11000 で計算する際は、分割した領域を SMP 並列とする ハイブリッド並列を行っており、昨年度は、その SMP 並列の高速化チューニングを行った。 本年度は、先ず、このモデルを図1bのように 東西方向(以下 j 方向)にも領域分割した。なお、 モデル・コードでは、j が最内ループ、次が i、最 外が k(鉛直方向)である。鉛直方向は反復計算 や陰解法に伴う通信が多いので、鉛直方向には領 域分割しない。

図1:(a)元々の領域分割。水平一方向で分割し、各領域内で SMP 並列する。(b)水平2方向に領域分割した。

図2:水平2方向に領域分割したことに伴う袖、及びそのデータ通信先。

領域分割に伴い、「袖」などと呼ばれるダミー・ グリッドを作成し、その通信を行う。今回の場合 の設定を図2に示す。モデル中の水平差分精度は 最高で4次なので、袖は2グリッドですむ。袖の 作成に伴い do ループの範囲も変更した。

次に、上記のように水平両方向に領域分割した モデルを、北海道大学情報基盤センターの新しい 大型計算機システム(SR16000M1)に移植し、高速化 チューニングを行う。

性能プロファイルを調べた所、極端に性能が低 くチューニング幅の大きいループはないことが確 認された。そこで、測定条件をいろいろ変えて性 能を比較した。その結果を表1に示す。

水平2方向で領域分割した効果を、先ず、MPI 並列とSMP並列を併用したhybrid並列処理で測定 した所、2方向で分割した場合の方が遅くなって 学際大規模情報基盤共同利用·共同研究拠点 平成 23 年度共同研究 最終報告書 2012 年 5 月

しまった(表1の1,2段目を比較)。これは、SMP 並列高速化に有効であった「物理スキームのより 上位ルーチンでの SMP 並列化」を妨げるルーチン (積雲パラメタリゼーション内の通信)があるた

めだと判明した。

そこで次に、MPI 並列のみを用いて比較した。 i, j 両方向に 8 分割すると、i 方向のみに 64 分割 した場合に比べ、計算時間が約 0.7 倍に減少した (表 1 の 4,5 段目を比較)。これは、hybrid の場 合よりも向上している(表 1 の 1,4 段目を比較)。 また、このテストケースでは問題規模を小さくし ているが、分割数を 128(4倍)にしても約3倍 の向上が見られた(表1の最下段とその上を比較)。

最後に、SR16000 の SMT 機能(一つの物理コア で複数のスレッド及びプロセスを同時に実行出来 る機能)についてもテストを行った。本モデルで は比較的大量のメモリを使用するため、残念なが ら、SMT 機能をオフにした方が性能が向上してい る(表1の1,3段目、4,6段目をそれぞれ比較)。

	ノード数	MPI数	SMP数	j方向 分割数	i方向 分割数	SMT	経過時間
hybrid	1	4	16	1	4	on	771
同上	1	4	16	2	2	on	1322
同上	1	4	8	1	4	off	748
MPI	1	64		8	8	on	729
同上	1	64	—	1	64	on	1045
同上	1	32	—	4	8	off	707
同上	4	128	—	8	16	off	229

表1:水平両方向に領域分割した後の大気モデル性能測定結果。

以上のテストを元に、高分解シミュレーション を開始した。図3は、実際に用いる高分解能モデ ルの設定での測定結果である。大気モデルを1日 間積分して経過した実時間を測定し、プロセス数

(分割数)160の場合を基準にした相対速度で示 している。プロセス数1280までは向上が見られる が、並列化効率は徐々に落ち、1920ではほとんど 向上しなかった。これは先に出て来た積雲パラメ タリゼーション内の通信が原因であった。解決に は、パラメタリゼーションの計算方法またはパラ メタリゼーションを見直す必要があり、これは今 後の課題とする。

図3:高分解能シミュレーションの設定を用いた測定結果。

(II) 環オホーツク圏大気海洋シミュレーション(a) オホーツク海を起源とする栄養物質循環と熱 塩循環

本課題では、環オホーツク圏の栄養物質循環を 特徴付ける鉄に注目してシミュレーションを行う。 そのため、熱塩循環を概ね良好に再現している海 洋大循環モデル[Uchimoto et al., 2011]に、鉄化 学モデル[Parekh et al., 2005]を組み込む。本年 度は、気候学的季節変動場について鉄化学モデル のパラメタ・テスト等を行い、鉄・リン分布の再 現性向上を行った。

鉄化学モデルを組み込んだシミュレーションの 結果得られた、溶存鉄濃度の中層における水平分 布(図 4a)とオホーツク海西岸沿いの鉛直分布(図 4b)、および海面でのリン酸(PO₄)濃度(図 4c)を 示す。これらは全球モデル用に調整されたパラメ タをそのまま用いているが、定性的な特徴はかな り良好に再現されている。例えば図 4a に見られる ように、鉄濃度が中層ではオホーツク海の方が太 平洋より高く、オホーツク海の中でも陸棚高密度 水の経路であるオホーツク海北部の陸棚からオホ ーツク海西岸にかけて高い。

図 4:鉄循環シミュレーション結果。気候学的季節変動場 における夏季。(a)溶存鉄濃度(nM)の水平分布。中層の等 ポテンシャル密度(26.8 σ_θ)面上のもの。(b)溶存鉄濃度 の鉛直分布。オホーツク海北西陸棚域(東経140度、北緯 57度付近)からオホーツク海西岸流域を通り、千島列島中 央部に至る経路に沿ったもの。(c)海面におけるリン酸濃 度(μM)。

鉛直断面で見ると図4bのように、鉄濃度は陸棚域

及び中層で高い。逆にリン酸はオホーツク海より 太平洋で高く、中でもアリューシャン列島域、亜 寒帯域、および千島列島域で高い(図 4c)。これ らの特徴は観測から指摘されている定性的特徴と 一致している。加えて、オホーツク海内の鉄濃度 の値も数少ない観測値から推測されている現実的 な範囲に収まっていた。

図5:鉄化学モデルとその設定の模式図。

さらに再現性を向上するため、および鉄循環へ の理解を深めるため、各種パラメタに対する感度 実験を行った。今回用いた鉄化学モデルの模式図

(図 5) に示すように、重要な鉄化学過程として、 海洋中の鉄のソースである(1)風送塵の沈着と溶 解および(2)堆積物からの溶解または巻き上げ、シ ンクとなる(3)凝集・捕集とそれに関わる錯形成、 そして内部の循環に関する(4)生物への取込およ び(5)その粒子としての沈降と粒子の再無機化が ある。

これらの過程には、実は、現在でも良く分かっ ていない点あるいは専門家の間で意見の分かれる 点が幾つもある。中でも甚だしいのが、鉄のソー スに関わる風送塵の溶解度と堆積物からの鉄供給 率である。溶解度は 0.1%~10%と研究者により大 きく異なる値が提案されている。堆積物からの鉄 供給は本来、海底付近の流速や海底の堆積物の量 と状態などに応じた海域依存性があるはずだが、 観測がカリフォルニア沖で1度実施されたものし かないため、そのときの観測値が全球で用いられ 学際大規模情報基盤共同利用·共同研究拠点 平成 23 年度共同研究 最終報告書 2012 年 5 月

ている。加えて、生物への取込も、本来は種によ り取込率が異なるので種組成への依存性があり、 したがって海域によって異なる。そこで、これら のパラメタについてテストを行った。

先ず、沈着した風送塵の溶解度について感度実験を行った。その結果を図6に示す。上段は海面、 下段は中層(26.8 *σ*_θ)での鉄濃度で、溶解度の小 さいケースから順に左から並んでいる。一見して 分かるように、海面に比べると中層は溶解度への 依存性が非常に小さい。鉄の観測データは最適な 溶解度を推定するには少なすぎるので、リン酸濃 度の海面分布から判断すると溶解度は1%の時が最 も観測データに近かった(図は省略)。

図 6:風送塵の溶解度に対する感度実験結果。海面(上段)と中層 26.8 σ_θ(下段)における鉄濃度。左から溶解度が 0,1,5,10% の場合。

次に、堆積物からの鉄供給率に対する感度実験 を行った。堆積物からの供給をなくすと(図 7)、 中層の鉄濃度は劇的に減少し、「オホーツク海の方 が太平洋より鉄濃度が高く特に中層で鉄濃度が高 い」といった基本的特徴が消えた。すなわち、オ ホーツク海周辺の中層鉄循環シミュレーションに 堆積物からの供給は欠かせない。

図 7:堆積物からの鉄供給がない場合の、中層(26.8₀) 鉄濃度。

さらに、どの海域の堆積物が重要かを調べるた め、オホーツク海内の陸棚を図8のa-dのように 4つに分け、それぞれの海域のみで堆積物からの 鉄供給を与えた。その結果が図9で、a-dはそれ ぞれ図8のa-dに対応する。基本的にソース域と それより下流で鉄濃度が高いが、下流に行くにつ れて影響は弱くなっていく。

図8の各海域での堆積物からの供給率を変化さ せ、オホーツク海西部中層の鉄濃度に対する影響 調べると、(1)供給域から、距離が伸びると濃度が 減少していくこと、(2)どこが供給域でも供給率が 0から1µmolm⁻²d⁻¹くらいまでは劇的に鉄濃度 が高まることが分かった(図は省略)。これは、堆 積物からの鉄供給が少ない場合は、リガンドが余 っているので、溶存鉄が増加しやすいのに対し、 鉄供給が増えて海中の鉄濃度が高くなるとリガン ドが少なくなり凝集・捕集されやすくなるためと 考えられる。また、(3)海水中の鉄濃度が一定以上 であれば、堆積物からの鉄供給率への応答は線形 に近くなった。このことを利用すると、各海域に 与えるべき供給率の粗い推定が得られる。

図8:堆積物からの鉄供給を与える海域。

図 9: 堆積物からの鉄供給を図 8 中に赤で示した海域のみ で与えた場合の、中層(26.8*o_a*)鉄濃度。

最後に、生物への取込過程に関するパラメタの テストを行った。取込の量はリン酸濃度(PO₄)・鉄 濃度(Fe)・光量(I)を用いて、次式でパラメタ化さ れている。この式中のαとK_{Fe}についてテストした。

$$\Gamma = \alpha \frac{PO_4}{PO_4 + K_{PO_4}} \frac{Fe}{Fe + K_{Fe}} \frac{I}{I + K_I}$$

基本的に、海面のリン酸濃度はαが大きいと減 少し、K_{Fe}が大きいと増加する(図は省略)。そこ で、海面リン酸濃度が気候学的分布に近くなるよ うにこれらパラメタを調整した。

(b) 潮汐による鉛直混合過程

本課題では、熱・塩・栄養物質の鉛直輸送を介 して熱塩循環および物質循環に重要な役割を果た している潮汐による鉛直混合過程について数値的 に調べた。代表者らの海洋大循環モデルではその 効果が簡単なパラメタ化により考慮されているが、 超高分解能非静水圧海洋モデルによる鉛直混合過 程シミュレーションを行い、パラメタ化の改良を 図る。本年度は、昨年度に行った数値シミュレー ションの詳細な解析、および理論化を目指しより 理想化された条件下での数値実験を行った。現在、 査読付国際誌に投稿準備中であり、詳細の記述は 投稿後または受理後に行いたい。

(c) オホーツク海周辺の下層雲

昨年度に高速化チューニングした領域大気気候 モデルを用いて、夏季の下層雲のシミュレーショ ンを行い、下層雲の形成・維持機構を調べた。昨 年度は、オホーツク海高気圧の発達した 2003 年 7 月に注目した。本年度は、オホーツク海高気圧の 発達しなかった年についてもシミュレーションを 行い、比較することで下層雲形成・維持のメカニ ズムと再現における鍵を調べた。

例として、オホーツク海高気圧が発達した別の 年 1998 年とオホーツク海高気圧が発達せず、海 面気圧が平年値より有意に低かった 2004 年につ いて7月月平均の下層雲分布を図 10 に示す。

下層雲はオホーツク海高気圧が顕著だった 2003年に最も多いが、2004年にも形成されてい る。1998年はむしろ比較的少ない。分布も年によ って大きく異なる。それでも詳細に見ると、どの 年も定性的には、陸域や太平洋などオホーツク海 の外から風の吹き込む海域で下層雲が少なく、気 塊がオホーツク海上に長く止まる海域で下層雲が 多い。つまり、オホーツク海外の比較的高温で乾 燥した気塊が、オホーツク海上で低い海面水温に 伴う顕熱フラックスで冷却されて、相対湿度が高 まり雲ができて気温が下降し、放射冷却と海面熱 フラックスがバランスして下層雲が形成された状 態で安定に近づくという過程は多くの年で共通し ている。より定量的な解析は今後の課題である。

学際大規模情報基盤共同利用・共同研究拠点 平成 23 年度共同研究 最終報告書 2012 年5月

(2) 当初計画の達成状況について

課題申請時の計画は全て達成された。それに加 えて来年度に向けた準備(大気シミュレーション) を開始している。以下、具体的項目毎に達成状況 を記す(詳細は3節参照)。

(I)計算機科学分野の課題:

本年度に予定していた水平双方向領域分割によ る MPI 並列処理及び新スパコンへの移植と高速化 を全て終了した。また、当初計画に加えて、新ス パコンで数 10~100 ノードを用いる大規模計算の テストを行った。なお、今回判明した SMP および さらなる分割化の妨げになっているルーチンは、 コードの変更では解決出来ない、物理スキームに 関係するものなので今後の課題とする。それ以外 の点については大気モデルの高速化チューニング はほぼ煮詰まったので、来年度以降は鉛直混合過 程の数値実験に用いているモデルなど、別のモデ ルの高速化も検討していきたい。

(II)環オホーツク圏大気海洋シミュレーション:

(a)鉄循環シミュレーション:計画していた気候 値場の再現を実施した。またパラメタ・テストに 基づく最適パラメタの推定を行い、再現性を向上 した。得られた成果は、2012年3月の国内学会で 発表済みである。

(b) 潮汐による鉛直混合過程:計画通り理想的条

件下での数値実験を終了した。成果は国際誌に投 稿準備中である。

(c)オホーツク海下層雲:計画通りオホーツク海 高気圧の発達した年とそうでない年について夏季 下層雲シミュレーションを行った。当初計画に加 えて、(I)で MPI 並列化した大気モデルを用いた高 分解能シミュレーションを開始した。

4. 今後の展望

(I)計算機科学分野については、今年度の成果で 大気モデルの高速化が一段落したので、次は海洋 モデルの高速化チューニングについて取りかかり たい。

(II) 環オホーツク圏大気海洋シミュレーショ ンについては、今年度の成果を踏まえて次は、(a) 鉄循環の経年変動シミュレーション、(b)鉛直混合 に寄与する3次元的過程の数値実験、(c)下層雲の 高解像シミュレーションを実施したいと考えてい る。

5. 研究成果リスト

(1) 学術論文(投稿中のものは「投稿中」と明記)

- Koseki, S., T. Nakamura, H. Mitsudera, Y. Wang (2012). Modeling low-level clouds over the Okhotsk Sea in summer: Cloud formation and its effects on the Okhotsk high. *Journal of Geophyscal Research*, 117, D05208, doi: 10.1029/2011JD016462.
- Uchimoto, K., T. Nakamura, J. Nishioka, H. Mitsudera, M. Yamamoto-Kawai, K. Misumi, D. Tsumune (2011). Simulations of chlorofluorocarbons in and around the Sea of Okhotsk: Effects of tidal mixing and brine rejection on the ventilation. J. Geophys. Res., 116, C02034, doi:10.1029/2010JC006487.
- 中村知裕, 古関俊也, 三寺史夫: 2012. オホーツク 海における大気海洋相互作用: 夏季の下層雲-海面水温フィードバック. 沿岸海洋研究(受理)
- Abe, S. and T. Nakamura. Processes of Breaking of Large-Amplitude Unsteady Lee Waves Leading to Turbulence. J. Geophys. Res. (投稿中)

Nakamura, T., J. P. Matthews, T. Awaji, and H.

学際大規模情報基盤共同利用・共同研究拠点 平成23年度共同研究 最終報告書 2012年5月

Mitsudera. Submeso-scale eddies near the Kuril Straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow. *J. Geophys. Res.* (投稿中)

- 中村知裕,磯田豊,三寺史夫,高木省吾,長澤真 樹:2011. アムチトカ海峡で観測された大振幅 内部波の砕波とグローバル評価.月刊海洋,通 巻494号, Vol.43, No.12, 699-704.
- 内本圭亮,中村知裕,西岡純,三寺史夫,川合美 千代,三角和宏,津旨大輔 (2011):オホーツ ク海物質循環モデリング.月刊海洋,通巻 493 号, Vol. 43, No. 11, 682-687.
- (2) 国際会議プロシーディングス なし
- (3) 国際会議発表
- Nakamura, T, J. Nishioka, T. Ono, H. Mitsudera. Winter mixed layer development by subtropical water intrusion over subarctic water and associated iron supply. 2012 Ocean Sciences Meeting, Feb 20 -24, 2012, Salt Lake City, USA.
- Abe, S. and T. Nakamura. Transition process from breaking large-amplitude internal waves to turbulence. 2012 Ocean Sciences Meeting, Feb 20 -24, 2012, Salt Lake City, USA.
- Abe, S. and T. Nakamura. Diapycnal mixing generated by breaking of tideinduced large-amplitude internal waves. IUGG2011, 28 Jun-7 Jul, 2011, P03_28PP028, Melbourne, Australia.
- Uchimoto, K., Nakamura, T., Nishioka, J., Mitsudera, H., Misumi, K. and Tsumune, D.
 Toward a simulation of iron circulation from the Okhotsk Sea to the Pacific. ESSAS 2011 OSM, May 22-26, 2011, Seattle, WA, USA.
- 松田淳二, 笹島雄一郎, 三寺史夫, 中村知裕, 羽 角博. Modeling of thermo-haline circulation of the Sea of Okhotsk and North Pacific. 第27回 北方 圏国際シンポジウム「オホーツク海と流氷」 2012年2月20-24日, 紋別市文化会館, 紋別市.

- (4) 国内会議発表
- 内本圭亮,中村知裕,西岡純,三寺史夫,三角和 弘,津旨大輔.オホーツク海のどこの海底に鉄 ソースがあれば高密度陸棚水の高濃度の鉄が実 現され得るか? 2012 年度 日本海洋学会 春季大 会,2012 年 3 月 26-30 日,筑波大学,茨城県つ くば市.
- 松田淳二, 笹島雄一郎, 三寺史夫, 中村知裕, 羽 角博康. 高解像度太平洋・オホーツク海モデル の開発. 2012 年度 日本海洋学会 春季大会, 2012 年 3 月 26-30 日, 筑波大学, 茨城県つくば 市.
- 内本圭亮,中村知裕,西岡純,三寺史夫,三角和 宏,津旨大輔.オホーツク海における鉄移送モ デリングの試み.2011年度日本海洋学会 秋季 大会,2011年9月26-30日,九州大学 筑紫キ ャンパス,福岡県春日市.
- 松田淳二, 笹島雄一郎, 三寺史夫, 中村知裕, 羽 角博康. 高解像度太平洋オホーツク海海洋-海 氷モデルの構築. 2011 年度 日本海洋学会 秋季 大会, 2011 年 9 月 26-30 日, 九州大学 筑紫キ ャンパス, 福岡県春日市.
- 三寺史夫,中村知裕. オホーツク海における大気 海洋相互作用. 2011 年度 日本海洋学会 秋季大 会,シンポジウム B,東アジア縁辺海における 大気海洋相互作用と海洋生態系への影響-沿岸 海洋シンポジウム- 2011 年 9 月 26-30 日,九 州大学 筑紫キャンパス,福岡県春日市.

(5) その他(特許,プレス発表,著書等)

三寺史夫,中村知裕:数値モデルを用いた環オホ ーツク地域の環境研究―将来予測へ向けて.環 オホーツク海地域の環境と経済」スラブ・ユー ラシア叢書 11,61-88,田畑伸一郎、江淵直人 編、北海道大学出版会.