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Development of artificial intelligence systems
to predict facial morphology
after orthodontic treatment
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Objective

To develop artificial intelligence (Al) systems that predict the 3D facial topography after orthognathic surgery and fixed edgewise

orthodontic treatment.

» Samples: A total of 137 patients who underwent orthognathic
surgery (n =72, mean age = 23.5 years old) and orthodontic
treatment with premolar extractions (n = 65, mean age = 15.6
years old) were enrolled. Three-dimensional facial images and
lateral cephalograms were obtained before and after the
treatment.

» Wire mesh fitting: For each patient at each time point, a wire
mesh fitting on the face was conducted. This method generated
6,017 semi-landmarks on the wire mesh (Figs. 2 and 3).

» Al systems : Based on the deep learning method, we developed
two Al systems (S and E) to predict changes in the coordinate
values of the semi-landmarks due to orthognathic surgery and
orthodontic treatment with premolar extractions, respectively.
Cephalometric changes during treatment and coordinate values of
semi-landmarks on the faces before treatment were employed as
predictor variables. The predicted post-treatment facial
morphology was calculated as the sum of the coordinate value on
the face before treatment and the predicted change for each
semi-landmark (Fig. 4).

» Evaluation: The system performance was evaluated using eleven-
fold cross-validation for each Al system. The system error was
determined as the difference between actual post- and predicted
post-treatment coordinates of the semi-landmarks in Z-axis (Table
1). Furthermore, the total success rate was examined, wherein
success cases were those with an average error of less than 1 mm
or2mm.

Soft- and hard- tissue changes after treatment were shown in Figs 5-
6. The system error was 0.89 = 0.30 mm (S) and 0.69 == 0.18 mm
(E; Table 2). Maximum errors were observed in the nasal alar (S), the
chin (S), the upper lip (S), and the lower lip (S and E; Figs. 7-8). The
total success rate of <1mm was 82% (74% [S] and 92% [E]), and the
total success rate of <2mm was 100%. A system that recognize the
cephalometric landmarks was developed separately [1], and a GUI
was developed for the clinical application (Fig. 7).

[1] Lee C, Tanikawa C, Lim JY, Yamashiro T. “Deep Learningbased Cephalometric Landmark

Identification using Landmarkdependent Multi-scale Patches’,
http://arxiv.ora/abs/arXiv:1906.02961, 2019.
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Fig. 6A. Averaged cephalometric changes (n = 72) *P<0.05; ** P00, ttest

Table 2A. Averaged error, standard deviation (5.D.), minimum value, and maximum value
(mm). Please see Table 1 for the definition of AveEachPt and AveEachPc.

veeachee | 0% o 402 Varaton among thepoints

0.89
laveeachpt | 030 033 177

I Predicted post-tx.

Variation among the patients

B Actual post-tx. B Actual pre-tx.

Coet Cases Case 10 G2 g ) [Gaseis baseto cosez? case a0

LA™

Case No.
Fig. 7A. Averaged error for each patient
Y-axis.
'\ (mm) *
20 ”
> b Success rate (%)
| [0 o
/ fYos
o0 74% w
"
) b
Fig. 8A. Averaged error Error (mm) s
(Absolute differences in Z-axis Fig. 9A. Success rate (Y-axis) for
between predicted and actual each threshold between 0.1mm 49
facial form at post treatment) and 1.5 mm (X-axis; n = 72.)
Z-axis (mm)

Conclusions

The Al systems were confirmed to be accurate and reliable in predicting
the 3D facial topography following orthognathic surgery and fixed
edgewise orthodontic treatment.
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Fig. 2. Coordinate system Orthod. 2019

Fig. 3. Mesh fitting (Homogeneous model)
‘The data was divided into 11 parts, one of which was employed as test data and the remaining 10 as learning
data. The test and learning data were exchanged 11 times, and the prediction accuracy of all cases was.
evaluated.
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Fig. 4. Mathematical model

Table 1. Calculation of the averaged error d (AveEachPt, AveEachPe, TotalAve)
d(1,) indicates the error of facial point jin the patient i.
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Table 2B. Averaged error, standard deviation (5.D.), minimum value, and maximum value
(mm). Please see Table 1 for the definition of AveEachPt and AveEachPc.
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Fig. 7. GUI for the
clinical application.
The system was
combined with a
deep Learning
model that can
recognize the
cephalograms,




