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中井 拳吾氏 (東京海洋大学) との共同研究
・K. Nakai and Y. Saiki (2018). Machine-learning inference of fluid variables from data using reservoir 

computing, Phys. Rev. E 98, 023111. https://arxiv.org/abs/1805.09917
・K. Nakai and Y. Saiki (2020). Machine-learning construction of a model for a macroscopic fluid variable using 

the delay-coordinate of a scalar observable, Discrete and Continuous Dynamical Systems S, online first.  
https://arxiv.org/pdf/1903.05770
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Reservoir computation

M, Mᇱ   ≪  N
      10 ~10ଷ        10ଷ ~10ହ 

(M = Mᇱ for full-inference)Mᇱ 
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Modelling of the Reynolds number dynamics using the 
delay-coordinate   (Takens 1981, Sauer, Yorke and Catagli 1991)
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Poincaré section                Distribution
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A single reservoir model can infer time-series from 
various initial conditions for some time
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The number of successful cases for each set of the time-delay 
Δτand the dimension M of the coordinate under two criteria
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Auto-correlation function C(x) and its envelope Ce(x)
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Summary
• We infer time-series of both microscopic and macroscopic variables 

of fluid flow by machine-learning technique using reservoir 
computation without a prior knowledge of a physical process. 

• In order to generate a time-series data of a macroscopic variable of a 
fluid flow, we do not need to go back to the microscopic dynamics. 

We have especially succeeded in constructing a closed form equation of a  
fluid flow describing macroscopic behavior only from data.
Time-delay coordinate of an input vector should be chosen as follows: 

・Delay-time Δτ is so that the auto-correlation function C is 
0.45<C(Δτ)<0.55 for the first time.

・Dimension M is chosen so that the envelope Ce of C is 
0.35<Ce(MΔτ)<0.40. 25
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