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Goal: To realize an efficient automatic development framework of deep neural network (DNN) that jointly optimizes 
the network configurations and the parameters based on the dual inheritance theory and massively parallel computing

Background
• Existing evolution based DNN meta-parameter optimization 

methods are useful but not efficient.  Only gene 
(Chromosome) is propagated to descendant generations, 
and other learned results are discarded

• In evolutional biology, the prominent development of the 
human brain is explained as the result of gene-culture 
coevolution

Comparison of Human Brain and DNN
• Both has a double structure of learning. The system 

design and individual learning
• The nature designs the brains, humans design DNN
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Proposed Dual-Inheritance Evolution Strategy
• Introduces an additional culture inheritance path to conventional evolution processes
• Uses teacher-student (TS) learning as the knowledge (culture) inheritance mechanism

Type Meta-parameters Initial value

Learning
patience 3

mtlalpha 0.5

Encoder

elayers 4

eunits 320

eprojs 320

Decoder
dlayer 1

dunits 300

Attention

adim 320

aconv-chans 10

aconv-filts 100

TS learning

𝜇𝜇 (TS weight) 0.3

𝜆𝜆 (End/Dec balance) 0.5

𝑇𝑇𝑇𝑇 (Temperature) 20

Gene Definition and Initialization Results
• Proposed DI-ES (Enc+Dec) gave the best performance, which combines 

TS learnings at the encoder and decoder of the end-to-end DNN
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Experimental 
Setups
• Target optimization 

task is end-to-end 
speech recognition

• CMA-ES was used 
as a baseline

• Two variations of 
TS learnings (Enc, 
Dec) and their 
combination 
(Enc+Dec) were 
implemented. They 
correspond to 
where at the 
network layers the 
TS is performed
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