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Goal: To realize an efficient automatic development framework of deep neural network (DNN) that jointly optimizes
the network configurations and the parameters based on the dual inheritance theory and massively parallel computing

Background

Comparison of Human Brain and DNN

* Existing evolution based DNN meta-parameter optimization * Both has a double structure of learning. The system
methods are useful but not efficient. Only gene design and individual learning

(Chromosome) is propagated to descendant generations,

* The nature designs the brains, humans design DNN

and other learned results are discarded e
* In evolutional biology, the prominent development of the \ s

human brain is explained as the result of gene-culture System Design Individual learning

luti (evolution / (Interaction with environment /

coevolution meta-parameter tuning) back-propagation)
Proposed Dual-Inheritance Evolution Strategy Experimental
* Introduces an additional culture inheritance path to conventional evolution processes Setups
* Uses teacher-student (TS) learning as the knowledge (culture) inheritance mechanism .
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* Proposed DI-ES (Enc+Dec) gave the best performance, which combines
— —  —— TS learnings at the encoder and decoder of the end-to-end DNN
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