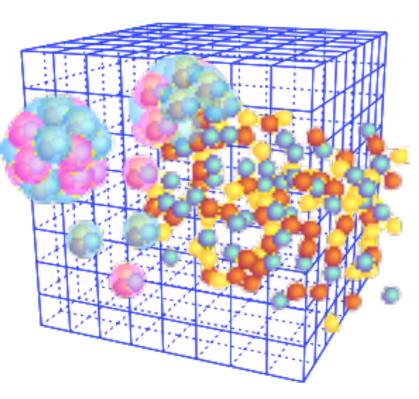
学際大規模情報基盤共同利用·共同研究拠点公募型共同研究 平成31年度採択課題

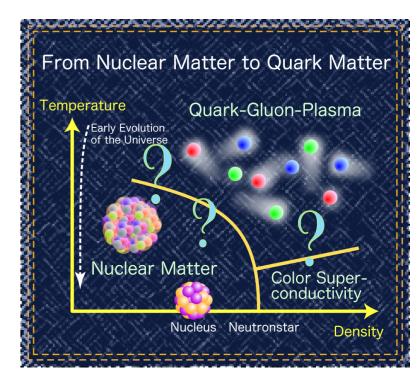
12th Symposium

jh190063-NAJ

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures


谷口裕介•金谷和至 (筑波大学) / Yusuke Taniguchi, Kazuyuki Kanaya (Univ. of Tsukuba)

物理的なクォーク質量におけるエネルギー運動量テンソルの研究 Study of Energy-Momentum Tensor at Physical Quark Mass



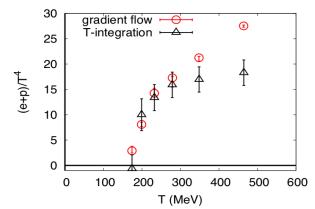
Y. Taniguchi^{*}, K. Kanaya^{*}, A. Baba^{*}, S. Ejiri¹, M. Kitazawa², H. Suzuki³, T.Umeda⁴ [WHOT-QCD Collaboration]

*U. Tsukuba, ¹Niigata U., ²Osaka U., ³Kyushu U., ⁴Hiroshima U.

We study quark matter at high temperatures to explore early Universe by numerical simulation of 2+1 flavor lattice QCD with improved Wilson quarks at the physical point. We apply the SFtX (Small Flow-time eXpansion) method based on the gradient flow, which is a general method to evaluate any renormalized quantities on the lattice. The method enables us to study the Energy-Momentum Tensor and chiral observables, which have been difficult on the lattice due to explicit violation of relevant symmetries.

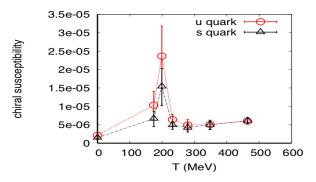
1. SFtX method based on the gradient flow

Gradient flow is a modification of fields in term of a fictitious time *t* driven by the gradient of an action [Narayanan-Neuburger 2006, Lüscher 2009-]. H. Suzuki proposed the SFtX method, a general method to compute any renormalized quantities on the lattice based on GF, irrespective of symmetry violations due to the lattice regularization [H.Suzuki, PTEP 083B03 (2013)]. We apply the method to evaluate EMT and chiral observables in QCD with improved Wilson quarks at high temperatures.


3.1 Renormalization scale

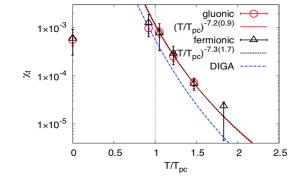
The renormalization scale of the matching coefficients in the SFtX method has a freedom to choose its vale μ within a range. Besides the conventional $\mu_d = 1/\sqrt{8t}$, we test a new scale $\mu_0 = 1/\sqrt{2e^{\gamma}t}$, which may improve data at large t.

2. QCD with heavy u, d and physical s quarks


As the first systematic application of the method to QCD with dynamical quarks, we first studied the case that u and d quarks are heavier than their physical masses. [Taniguchi, Kanaya, et al., Phys. Rev. D 95, 054502 (2017); ibid. 96, 014509 (2017); 99, 059904(E) (2019)]

2.1 Equation of State (diagonal elements of EMT)

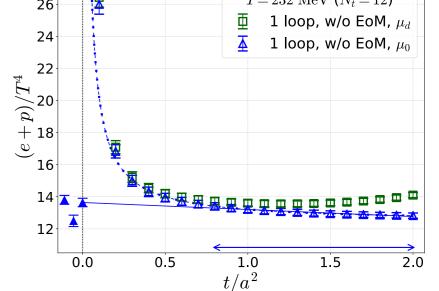
- consistent with conventional T-integration method
- disagreement at T≥350MeV due to
 - $O((aT)^2=1/Nt^2)$ lattice artifacts at Nt ≤ 8


2.2 Chiral Susceptibility (disconnected)

 clear peak at Tpc≈190MeV as expected from other obs.,

in spite of explicit chiral violation due to the Wilson quark action

2.3 Topological Susceptibility

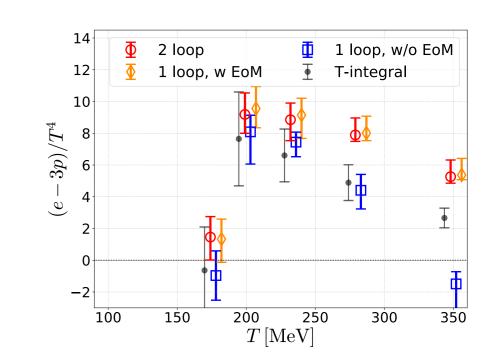

- gluonic and fermionic definitions agree with each other, for the 1st time already on finite lattices
- T-dep. consistent with DIGA

Consistency among different methods suggests that our lattice is

We found that the μ_0 -scale

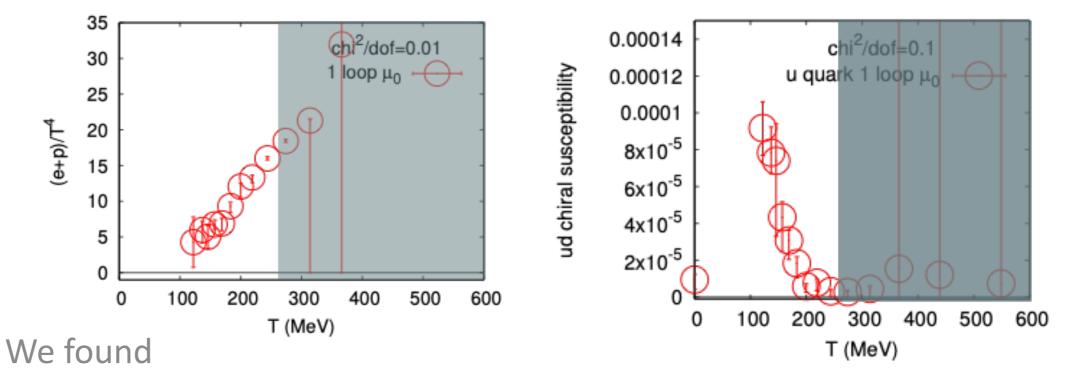
- improves the signal at large t,
- extends the stability and applicability of the SF*t*X method.

3.2 2-loop matching coefficients


We have been using 1-loop matching coefficients of Makino and Suzuki (2014). Recently, Harlander et al. calculated 2-loop coeff.'s for EMT, using equation of motion (EoM) for quarks (2018). Use of

2-loop coeff.'s may improve data

at small intermediate t.


In our test, we found

- no apparent improvement with
- 2-loop coeff.'s on our fine lattice,
- EoM gets $O(1/Nt^2)$ artifacts at Nt ≤ 10 .

4. QCD with physical u, d, s quarks (preliminary)

We now extend the study to 2+1 flavor QCD with all quarks with physical mass with the μ_0 -scale. Our preliminary results have been presented at conferences. [Kanaya, Taniguchi, et al., Lattice 2019, 088 (2020)]

fine enough. We found that the SFtX method is quite powerful.

3. Improvement of the SFtX method

In the application of the SFtX method to QCD at physical u, d, s quark masses (physical point QCD) and other more complicated observables, we found that we need to improve the method.

In FY 2019, besides generating finite-temperature configurations at the physical point, we carried out tests of the renormalization scale and 2-loop matching coefficients in the SFtX method, using the heavy u, d configurations. We found that a proper choice of the renormalization scale does extend the stability and applicability of the SFtX method much. [Taniguchi, Kanaya, et al., arXiv: 2005.00251] big improvement of the signal with the μ₀-scale.
signals similar to the heavy u, d case, but s quark shows milder transition than u, d, as expected.
suggest T_{pc} < 157MeV (T ≈ 122-146 MeV may be critical). Need more statistics at low T's.

=> simulations on-going with JHPCN etc.

JHPCN

学際大規模情報基盤共同利用・共同研究拠点 第12回シンポジウム

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

2020年7月9日