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Significance of Research (1/2)
• Eigenproblem is one of essential numerical problems 

for several numerical simulations. Its accuracy, 
however, is not well-assured in many conventional 
numerical computations.

• Basic Linear Algebra Subprograms (BLAS) is a 
frequently used to perform linear algebra 
computations. Ensuring the accuracy of the 
computational results of BLAS operations is a still 
crucial problem now. Even in solving linear equations 
using LAPACK is also a typical example, because 
LAPACK is rich in BLAS operations, especially matrix-
matrix multiplication (MMM) operations for solving 
linear equations. 2



Significance of Research (2/2)
• We focus on the following three topics:

1. Developing an accuracy assured numerical 
libraries for eigenproblems; 

2. Development of high-performance 
implementation and AT technology for the 
developed accuracy assured numerical 
libraries; 

3. Discussing an extension for non-liner 
problems based on obtained knowledge of 
accuracy assured algorithms.
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Roles of Project Members
 Prof. Katagiri: High-performance implementation of Osaki method

for recent multicore CPUs, and applying auto-tuning technologies.
 Prof. Hwang: Non-linear algorithms for actual engineering problems.
 Dr. Marques: Algorithms and implementations for eigenproblem.
 Prof. Nakajima: Sparse iterative algorithms for liner equation solvers,

such as parallel preconditioners.
 Prof. Ogita: Iterative refinement algorithm to assure accuracy of real

symmetric eigenproblem.
 Prof. Ohshima: GPGPU implementations.
 Prof. Ozaki: Accurate MMM algorithm (Ozaki method)
 Prof. Wang: Eigenvalue algorithms for actual engineering problems.
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Research Plan
• This proposal is planned as three year’s.

FY2019 is the first year.
• The Year 1st (FY2019):

– Topic 1: Performance evaluation of 
high-performance implementations for UNC-HPC 
libraries between multi-core and many-core CPUs 
and a GPU.

– Topic 2: Designing accuracy assured libraries for 
real symmetric eigenproblem. 

– Topic 3: Discussing extension to non-linear 
problems.
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TOPIC 1: 
PERFORMANCE EVALUATION OF 
HIGH-PERFORMANCE 
IMPLEMENTATIONS FOR UNC-HPC 
LIBRARIES BETWEEN MULTI-CORE 
AND MANY-CORE CPUS AND A GPU.
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Development of Verified Numerical 
Computations for Applications

Takeshi Ogita
Tokyo Woman's Christian University

SC18, Dallas, USA
Nov. 14, 2018

Post-K Project in Japan: Exploratory Challenges 1-2
Development of verified numerical computations in

high-performance computing environments



Outline

Develop a super high-performance computing environment 
that can solve various challenging problems caused by 
numerical errors.

Goal of our project

Introduce the axis of accuracy into high-performance 
computing on the K and Post-K computers.
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Performance
= Speed * Accuracy



Research Organization

9

Organization Representative Role

Leader

Tokyo Woman’s
Christian Univ.

OGITA,
Takeshi

Project leader, Development of 
algorithms for accurate 
numerical computations

Partners

Waseda Univ. KASHIWAGI,
Masahide

Development of algorithms for 
verified numerical 
computations

Nagoya Univ. KATAGIRI,
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Development of benchmark 
methods and implementation

Shibaura Inst. 
Tech.
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Katsuhisa

Development of fast and 
accurate matrix multiplication 
methods
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Why this is necessary

• In numerical computations, computed solutions 
suffer from several numerical errors:
– discretization errors: FEM, FDM, etc.
– rounding errors: floating-point arithmetic
– truncation errors: iterative solvers

• In particular, in HPC environments,
– rounding errors are highly accumulated in large-scale 

problems,
– results are often not reproducible (due to 

parallelization and others).
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Example: Accuracy of 
computed solutions of Ax = b
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cond(A) Residual Error

1.0E+03 2.07E-16 5.08E-14

1.0E+06 1.00E-16 2.59E-11

1.0E+09 8.23E-17 1.98E-08

1.0E+12 9.40E-17 1.59E-05

1.0E+15 6.49E-17 1.02E-02

LINPACK check
(residual)

n = 100, vary cond(A)

Relative 
error

A: random, cond(A) = 1E+10

correctness of the 
implementation

correctness of
the results



What we can do now

• Verified solutions of dense linear systems
– For general matrices, verification cost is around 1-5 

times more than LU factorization.
– For symmetric positive definite matrices, verification 

cost is almost nothing using Cholesky factorization.
– The accuracy of computed solutions can be improved 

up to the limit of working precision with a little cost.
– For ill-conditioned cases, verification cost is adaptive.

• Verified solutions of sparse linear systems
– Direct solvers are required in most cases.
– Applicable range is limited (diagonally dominant, M-

matrix, symmetric and positive definite), but fast.
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Verification Algorithm

1. Solve a discretized linear system .
 𝑥ො: a computed solution

2. Solve a linear system where all 
elements of are 1's.
 𝑦ො: a computed solution

3. Verify M-property of using . (𝑦ො ൐ 0  ⇒   𝐴𝑦ො ൐ 0)
4. Compute an error bound using

ஶ ஶ ஶஶ
if ஶ .
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HIGHLY ACCURATE MMM: 
OZAKI METHOD
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Overview of High Precision Matrix-Matrix 
Multiplications (MMM) Algorithm 

(Ozaki Method †1) （1/3）

A Matrix-Matrix 
Multiplications A B

Summation of 
Decomposed 
Matrices with 
Floating Point 

Operations

pm
q

r

q
q

FC

CABC

×

=

∈

== 
1

Error-Free 
Transformation
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†1  K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of Matrix Multiplication by 
Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59, No.1, 
pp.95-118, 2012.

F : A Set of Floating Point
Numbers.

A :  A Matrix with m * n. 
B :  A Matrix with n * p.
C :  A * B



Other Part of The Error Free 
Transformation in Ozaki Method

𝑛஺： The number of decomposed matrices from matrix 𝐴.𝑛஻：The number of decomposed matrices from matrix 𝐵.
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Function EF = EFT_Mul(A, B )
[A, nA ] := Split_A; [B, nB ] := Split_B;

k := 1;
for i =1: nA

for j =1: nB

EF { k } := A { i } * B { j };   k := k + 1;
end;  end;  

end

ሺ௞ሻ௡ಲ·௡ಳ
௞ୀଵ Faithful

Algorithm
• A High

Precision
Summation: 

Multiple BLAS implementation



Faithful Algorithm†
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Ozaki Method for MMM

Round-off the true answer to 
the nearest left or right floating number.

†Siegfried M. Rump, Takeshi Ogita, Shin'ichi Oishi: Accurate Floating-Point 
Summation Part I: faithful Rounding, SIAM Journal on Scientific Computing, 
31:1 (2008), 189-224.

Accuracy Assured

True Answer (Real 
Number)



Characteristics of Ozaki Method

• Ozaki method can establish high precision 
for MMM with extremely dispersed elements. 

• Computational complexity of Ozaki method 
depends on range of input elements. 
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(1) If dispersion of elements of matrix is large:
Sparse matrix can be utilized after error free translation 

to reduce computational complexity.

(2) If dispersion of elements of matrix is small:
Cannot reduce computational complexity. 

But, Conventional high performance implementations
(BLAS dgemm) of dense MMM can be utilized.



Error-Free Transformation (1/3)

• 𝜇1 ൌ  maxሺ𝑎𝑏𝑠ሺ𝐴ሻ, ሾ ሿ, 2ሻ ; • 𝜏 ൌ  2௖௘௜௟ሺሺౢ౥ౝమ ೠషభశ ౢ౥ౝమሺ೙శభሻሻమ ሻ;

Take absolutely
maximum 
elements 
in each row.

Take maximum elements 
of products in each column.஺ ௖௘௜௟ሺ୪୭୥మሺఓଵሻሻ

19＊ 𝑐𝑒𝑖𝑙()： Compute minimum integer number

①

②



• Make T as:
T=[tA, tA, … ,  tA],

where, Tij > Aij .

　　𝑡஺ 𝑡஺ 𝑡஺・・・

𝐴ሺଵሻ 𝐴 ଶ ᇱ
• 𝐴ሺଵሻ ൌ 𝑓𝑙ሺሺ𝐴 ൅ 𝑇ሻ െ 𝑇ሻ;
• 𝐴 ଶ ᇱ ൌ 𝑓𝑙ሺ𝐴 െ 𝐴ሺଵሻሻ; Extract values which exceed 

range of expression of products 
with respect to round-off error.

Maximum number of 
products in each 
column. 
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Error-Free Transformation (2/3)

T = 

③

④

fl (*) : A Floating Point Computation



Error-Free Transformation (3/3)
• An image of decomposition (Error free transformation) 

A(1) A(2)

-s bit-
A(3) A(4)

-s bit--s bit- -s bit-
B(1) B(2)

-s bit-
B(3) B(4)

-s bit- -s bit- -s bit-ଶ ିଵ ଶ
Ex.) If 𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, then it should take:𝑓𝑙𝑜𝑜𝑟ሺ ሺ53 െ logଶ 𝑛 /2ሻ [bit], 
And if matrix size is 𝑛 ൌ 1024, then 
it should take 𝑓𝑙𝑜𝑜𝑟 ହଷିଵ଴ଶ ൌ 21 [bit]. 21

𝑓𝑙𝑜𝑜𝑟：under rounding for 
the first digit of floating 
point number.

[bit]

Matrix size 
= n x n



Strategy of Using Sparse Matrix 
for Our Implementation
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Start

Error Free Transformation

If the sparsity If the sparsity 
is more than 

90%?

SpMVdgemm

High Precision Summation

NO YES



Sparse Matrix-vector Multiplication 
(SpMV) Implementation for Ozaki Method

• We describe the calculation time of the SpMV routine in 
the Compressed Row Storage (CRS) and Ell-pack (ELL) 
formats in the CPU and GPU environments for a test 
matrix.

• The whole duration of the routine includes the error-free 
conversion time, duration of the change to the sparse 
matrix format, and actual calculation time. 

• The error-free conversion time is “error_free”; the 
conversion time of matrix A to the sparse matrix format 
and the memory transfer time from the CPU to the GPU 
is “setA”; the SpMV routine time is “kernel”; the memory 
transfer time from the CPU to the GPU of the matrix B 
and from the GPU to the CPU of the matrix C is 
“SetB,C”; the duration of the remaining operations is 
given under “other”.

23



Result of SpMV Implementations 
for Ozaki Method
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Fig. 2. Execution speed of the SpMV routine with the format and
ELL formats in the CPU and GPU environments for a test matrix with
N = 10,000 in accurate MMM library. Reedbush-H (U. Tokyo) is used.

30.9%
Reduction 37.7%

Reduction



Sparse Matrix-Matrix Multiplication 
(SpMxSpM) Implementation for Ozaki Method

• We have developed an implementation of 
SpMxSpM with CRS format for Ozaki method in 
GPU environment. 

• We evaluate performance of the SpMxSpM 
implementation for Ozaki method with cuBLAS. 
In addition, sparse matrix-matrix (SpMM) 
implementation for Ozaki method with cuBLAS 
is also evaluated.
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Result of SpMxSpM 
Implementations for Ozaki Method
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Fig. 3 Execution time between SpMM and SpMxSpM implementations for
Ozaki method. X-axis is sparsity of input matrix. “*1” stands for SpMM
implementation. “*2” stands for SpMxSpM implementation.
Reedbush-H (U. Tokyo) is used.

11.9% Reduction
By using SpMxSpM



TOPIC 2: DESIGNING ACCURACY 
ASSURED LIBRARIES FOR REAL 
SYMMETRIC EIGENPROBLEM. 
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ACCURACY ASSURED 
LINEAR EQUATION SOLVER
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Iterative Refinement
• We check real answer of large-scale linear equations for liner solver 

with residual iteration refinement by accurate dot product 
(pseud quadratic accuracy). 

• This experiment is using 1750,000 dimensions for linear equations. 
• 2500 nodes (80,000 cores) of the Fujitsu PRIMEHPC FX100 in Nagoya 

University is used. 
• The iterative refinement procedure is: (1) an approximate answer is 

obtained by using LU factorization; (2) A residual iterative refinement is 
performed. 

• The result is as follows: 

(First Step) Residual Norm: 4.019007e-14
(Second Step) Residual Norm: 0.000000e+00

• The above result indicates that the real answer is obtained with 2 step 
iterations. This also shows that the assured procedure we propose is a 
useful way for large-scale computations.
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Solving Linear Equations
• We evaluate assured accuracy computation for 

solving linear equation. Given accuracy is improved 
by the iterative refinement procedure shown in previous slide.

• We set a real answer with (1,1,1,…,1)^T. 
• 2500 nodes (80,000 cores) of the Fujitsu PRIMEHPC FX100 in 

Nagoya University is used. 
• The result is:

(1 million dimension) Upper bound of error: 1.111484e-16
(1.5 million dimension) Upper bond of error: 1.113360e-16

• The above result indicates that the obtained accuracy is 
almost full for double precision computation. Hence the accuracy 
assurance can be adaptable for very large-scale computations 
on distributed memory supercomputers. 
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ACCURACY ASSURED
STANDARD SYMMETRIC 
EIGENPROBLEM SOLVER
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Iterative Refinement 
(Eigenproblem)

• We made a proto type implementation of 
assured accuracy library for standard symmetric 
eigenproblem.

• PDSYEVD (a ScaLAPACK routine） is used for 
this implementation. For test matrix, a symmetric 
matrix with elements generated by uniform 
distribution [0, 1].

• The Fujitsu PRIMEHPC FX100 in Nagoya 
University is also used.
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Performance Evaluation 
(Varying Nodes)

• FX100
• 𝑛 ൌ 50,000
• PDSYEVD（ScaLAPACK）
• According to Fig. 4, there 

is a scalability for the ratio. 
This means that the ratios 
of verification time to 
computation time of 
eigenvalue are getting 
smaller according to 
number of nodes. 

• This is a nice result to 
adapt the library of 
accuracy assurance to 
several applications. 

33

Fig. 4 Ratios of execution time
(Tveri / Teig). Tveri  stands for verification 
time. Teig stands for computation time of 
eigenvalues. 



iPerformance Evaluation 
(Weak Scaling)

• FX100
• 𝑛 ൌ 125,000~500,000
• PDSYEVD（ScaLAPACK）
• We fix number of dimensions 

per node, while number of 
nodes increases. This is weak 
scaling evaluation. 

• Fig. 5 shows that execution 
time for assured accuracy 
computation can be occupied 
up to 40%~50% to 
computation time of 
eigenvalues. 
This is acceptable ratio for 
large-scale computation.

34

Fig. 5 Weak Scaling Result.



Performance Evaluation 
(Accuracy)

• FX100
• 𝑛 ൌ 500,000
• PDSYEVD（ScaLAPACK）
•    𝑖-th smaller approximate eigenvalue.
• upper error bound  of by 

accuracy assurance. 
• We fix number of dimensions per node, 

while number of nodes increases. This 
is weak scaling evaluation. 

• Fig. 6 shows that upper bound of 
calculated error is 60% at the worst. 
This indicates that the calculated result 
is never included “duplicate 
eigenvalues” for the eigenproblem with 
dimension of 500,000. 

• We cannot proof this without the 
techniques for accuracy assurance for 
the eigenproblem. 
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Fig. 6 Errors of computed eigenvalues to 
real answer.



TOPIC 3: DISCUSSING EXTENSION 
TO NON-LINEAR PROBLEMS.
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Future Prospects
• Topic 1: UNC-HPC libraries between multi-core and many-core 

CPUs and a GPU.
– According to our results, we found several performance 

changes based on computer environments, such as CPU or GPU. 
In addition, sparsity of input matrix is also crucial factor. 

– We need to add adaptive selection for several implementations 
of Ozaki method. To establish this, auto-tuning (AT) technology 
is one of promising ways. 

• Topic 2: Designing accuracy assured libraries for real 
symmetric eigenproblem.
– We need to develop high performance implementation of the 

accuracy assured libraries for real symmetric eigenproblem 
toward to distributed memory supercomputers. In particular, 
adaptation of GPU computing is highly required.
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