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Significance of Research (1/2)

* Eigenproblem is one of essential numerical problems
for several numerical simulations. Its accuracy,
however, is not well-assured in many conventional
numerical computations.

e Basic Linear Algebra Subprograms (BLAS) is a
frequently used to perform linear algebra
computations. Ensuring the accuracy of the
computational results of BLAS operations is a still
crucial problem now. Even in solving linear equations
using LAPACK is also a typical example, because
LAPACK is rich in BLAS operations, especially matrix-
matrix multiplication (MMM) operations for solving
linear equations.



Significance of Research (2/2)

* We focus on the following three topics:

1. Developing an accuracy assured numerical
libraries for eigenproblems;

2. Development of high-performance
implementation and AT technology for the
developed accuracy assured numerical
libraries;

3. Discussing an extension for non-liner
problems based on obtained knowledge of
accuracy assured algorithms.



Roles of Project Members

® Prof. Katagiri: High-performance implementation of Osaki method
for recent multicore CPUs, and applying auto-tuning technologies.

Prof. Hwang: Non-linear algorithms for actual engineering problems.

Dr. Marques: Algorithms and implementations for eigenproblem.

® Prof. Nakajima: Sparse iterative algorithms for liner equation solvers,
such as parallel preconditioners.

® Prof. Ogita: Iterative refinement algorithm to assure accuracy of real
symmetric eigenproblem.

Prof. Ohshima: GPGPU implementations.
Prof. Ozaki: Accurate MMM algorithm (Ozaki method)
® Prof. Wang: Eigenvalue algorithms for actual engineering problems.



Research Plan

* This proposal is planned as three year’s.
FY2019 is the first year.

 The Year 1st (FY2019):

— Topic 1: Performance evaluation of
high-performance implementations for UNC-HPC
libraries between multi-core and many-core CPUs
and a GPU.

— Topic 2: Designing accuracy assured libraries for
real symmetric eigenproblem.

— Topic 3: Discussing extension to non-linear
problems.



TOPIC 1:

PERFORMANCE EVALUATION OF
HIGH-PERFORMANCE
IMPLEMENTATIONS FOR UNC-HPC
LIBRARIES BETWEEN MULTI-CORE
AND MANY-CORE CPUS AND A GPU.
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Verified Numerical Computations

LINC -HBPLC Outline

High-Performance Computing

Goal of our project

Develop a super high-performance computing environment
that can solve various challenging problems caused by
numerical errors.

Introduce the axis of accuracy into high-performance
computing on the K and Post-K computers.

Accuracy Efficiency
(Reliability) (Energy-saving)

Green500,
Green Graph500, ... Performance

Speed = Speed * Accuracy

(Time-saving)
Top500,
Graph500, ... 8



Verified Numerical Computations

-

NC-HALC

High-Performance Computing

Research Organization

Project period: August 2016 - March 2020 (3.5 years)

Organization |Representative Role
|_ .
8 Tokyo Woman's | OGITA, Pl’Oje.Ct leader, Development of
2 | Christian Univ. | Takeshi algorithms for accurate
@ ' axesni numerical computations
| KASHIWAGI, Dey_elopment Qf algorithms for
Waseda Univ. M hid verified numerical
- asahide computations
g,—_%_ . KATAGIRI, Development of benchmark
5 | Nagoya Univ. . . :
@ Takahiro methods and implementation
n
Shibaura Inst. | OZAKI, Development of fast and
Tech Katsuhisa accurate matrix multiplication
' methods




Vdem cal Computatio

|_rr||: HAC Why this Is necessary

High-Performance Computing

* |n numerical computations, computed solutions
suffer from several numerical errors:
— discretization errors: FEM, FDM, etc.
— rounding errors: floating-point arithmetic
— truncation errors: iterative solvers

 |n particular, in HPC environments,

— rounding errors are highly accumulated in large-scale
problems,

— results are often not reproducible (due to
parallelization and others).

10



Verified Numerical Computations
LIMC-HRLC

High-Performance Computing

Example: Accuracy of

computed solutions of Ax=b

A: random, cond(A) = 1E+10

1E+03 '

1E+00

1E-03

1E-09
1E-12
1E-15

1E-06 E/

H == residual [

== error

—

—

(—

—

1E-18

1E+1 1E+2 1E+3r11E+4 1E+5 1E+6

LINPACK check

(residual)

Ilb _AEEHOO

n =100, vary cond(A)

correctness of the

implementation

[ Alloe IZ][oe + [1]loc

cond(A) | Residual Error
1.0E+03 | 2.07E-16 | 5.08E-14
1.0E+06 | 1.00E-16 | 2.59E-11
1.0E+09 | 8.23E-17 | 1.98E-08
1.0E+12 | 9.40E-17 | 1.59E-05
1.0E+15 | 6.49E-17 | 1.02E-02
Relative —— T; —
error T

correctness of
the results




Vdem cal Computatio

|_rn|: HI:I \What we can do now

High-Performance Computing

« Verified solutions of dense linear systems

— For general matrices, verification cost is around 1-5
times more than LU factorization.

— For symmetric positive definite matrices, verification
cost is almost nothing using Cholesky factorization.

— The accuracy of computed solutions can be improved
up to the limit of working precision with a little cost.

— For ill-conditioned cases, verification cost is adaptive.

* Verified solutions of sparse linear systems
— Direct solvers are required in most cases.

— Applicable range is limited (diagonally dominant, M-

matrix, symmetric and positive definite), but fast.
12



Vdem cal Computatio

Lrn|: HI:I Verification Algorithm

High-Performance Computing

1. Solve a discretized linear system Ax = b.
» X. a computed solution

2. Solve a linear system Ay = e where all
elements of e are 1's.
» y.a computed solution
3. Verify M-property of Ausingy. ( >0 = Ay > 0)
4. Compute an error bound using
[Vl llb — A% ||
1—lle=AYllo

1x = Xllo <

if lle — AY]l < 1.

13



LI'I'II: HIZIE

HIGHLY ACCURATE MMM:

OZAKI METHOD

14



ikl i Overview of High Precision Matrix-Matrix

|_r|'||: -HRALC Multiplications (MMM) Algorithm
High-Performance Computing s (Ozak| Method -|-1) (1 /3)

A Matrix-Matrix
Multiplications A B

Summation of
Decomposed
Matrices with

Error-Freg Floating Point
el | Operations

C = AB = Z C . F:ﬁusrﬁégl;slfloating Point
q =1 A A Matrix with m * n.
C q c F mx p (B;::ﬁl}c/lgtrixwithn*p.

11 K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of Matrix Multiplication by
Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59, No.1, 15
pp.95-118, 2012.



r... Other Part of The Error Free
LIMC -HALC Transformation in Ozaki Method

High-Performance Computing

e Part of MMMs

n,: The number of decomposed matrices from matrix A.
ng: T'he number of decomposed matrices from matrix B.

Function £F = EFT Mul(A4 B)
[A, n,] = Split A; [B ngl = Split_B;
k=1;
for /=1: n, Multiple BLAS implementation

nanpg

A High
Prec?sion AB = z EF®) »
Summation: =

Faithful
Algorithm




Verified Numerical Computations

Faithful Algorithms+

High-Performance Computing

Round-off the true answer to

the nearest left or right floating number.
=

True Answer (Real

fl\Number) l i
| + o

Figure 1: faithful rounding

Accuracy Assured

tSiegfried M. Rump, Takeshi Ogita, Shin'ichi Oishi: Accurate Floating-Point
Summation Part I: faithful Rounding, SIAM Journal on Scientific Computing, 17
31:1 (2008), 189-224.



“C-npe| Characteristics of Ozaki Method

High-Performance Computing

* Ozaki method can establish high precision
for MMM with extremely dispersed elements.

« Computational complexity of Ozaki method
depends on range of input elements.

(1) If dispersion of elements of matrix is large:
Sparse matrix can be utilized after error free translation
to reduce computational complexity.

(2) If dispersion of elements of matrix is small:
Cannot reduce computational complexity.
But, Conventional high performance implementations
(BLAS dgemm) of dense MMM can be utilized.

18



Verified Numerical Computations

Error-Free Transformation (1/3)

High-Performance Computing

( dy, Uy =  dy, ) Take absolutely /max a, )
< > | maximum l<j<n!
a21 aZZ ..... az
- ,; elements max|a, ;

. 1<j<
: .. : in each row. =
a. a. . a A max
\ “*ml m2 mn ) \ 1<j<n

a,|
ul

- > @
A
e ul = max(abs(4),[1] 2);

(1 —14 1
. ¢ = 2Cell(( 08 U +2 0gp(n+ ))).

@
_ oceil(logy(u1)) Take maximum elements
of products in each column.

* ceil(): Compute minimum integer number 19



Verified Numerical Computations

Error-Free Transformation (2/3)

High-Performance Computing

. Make T as: Maximum number of
@ T=ly,t, ST products in each
where, T, > 4, column. |

T = ty tyeen b,

Vo

fl (*) : A Floating Point Computation

Extract values which exceed
range of expression of products

with respect to round-off error.5



Verified Numerical Computations

High-Performance Computing

LN -HRLC

Error-Free Transformation (3/3)

* An image of decomposition (Error free transformation)

Matrix size
=NnXxn

A
-S bit-

A2)
-s bit{-s bit-

AB)

A&
-S bit-

B | B@| B®| B@
-s bit- |-s bit-|-s bit-|-s bit-

s = floor((log,(u™") —log,(n))/2) [bit]

Ex.) If double precision, then it should take:

floor( (53 —log,(n) /2) [bit],

And if matrix size is n = 1024, then
it should take floor (

2

53-10

) = 21 [bit].

floor:under rounding for
the first digit of floating
point number.

21



r... eeeeeee g Strategy of Using Sparse Matrix
LIMC -HPLC for Our Implementation

High-Performance Computing

Start
I

Error Free Transformation

— =

If the sparsity
IS more than
90%"?

O

dgemm SpMV
=

High Precision Summation -




Vdem cal Computatio

Sparse Matrix-vector Multiplication
L”-": H|:I (SpMV) Implementation for Ozaki Method

High-Performance Computing

* \We describe the calculation time of the SpMV routine in
the Compressed Row Storage (CRS) and Ell-pack (ELL)
formats in the CPU and GPU environments for a test
matrix.

 The whole duration of the routine includes the error-free
conversion time, duration of the change to the sparse
matrix format, and actual calculation time.

* The error-free conversion time is “error_free”; the
conversion time of matrix A to the sparse matrix format
and the memory transfer time from the CPU to the GPU
Is “setA”; the SpMV routine time is “kernel”; the memory
transfer time from the CPU to the GPU of the matrix B
and from the GPU to the CPU of the matrix C is
"SetB,C”; the duration of the remaining operations is 55
given under “other”.



Verified Numerical Computations

Result of SpMV Implementations

High-Performance Computing for Oza ki M eth Od
180
30.9% .
- Reduction 37.1% _
0 Reduction
E
§ 90
3
| 45 l
0
GiSICY) lerrocrFE G wkemel m setg:pUL other ELL(GPU)

Fig. 2. Execution speed of the SpMV routine with the format and
ELL formats in the CPU and GPU environments for a test matrix with
N = 10,000 in accurate MMM library. Reedbush-H (U. Tokyo) is used. 24



e g Sparse Matrix-Matrix Multiplication
runmEmeE (SpMxSpM) Implementation for Ozaki Method

 We have developed an implementation of

SpMxSpM with CRS format for Ozaki method in
GPU environment.

* We evaluate performance of the SpMxSpM
iImplementation for Ozaki method with cuBLAS.
In addition, sparse matrix-matrix (SpMM)
Implementation for Ozaki method with cuBLAS
IS also evaluated.

25



rEnE—HnE | Result of Spl\/IxSpI\/I
Implementations for Ozaki Method

300

I

I%')

11.9% Reduction
By using SpMxSpM

p—
0
o

Elapsed time(s)
et
)
S

=
0 — — — — — — — — — — — — — —
*1 *2 *1 *2 *1 7‘.‘2 ‘kl *2 *1 *2 *1 7‘:2 '}:1 *2
90% 95% 96% 97% 98% 99% max
B error B setA kernel e setB.C
. others s SpMM SpMxSpM

Fig. 3 Execution time between SpMM and SpMxSpM implementations for
Ozaki method. X-axis is sparsity of input matrix. “*1” stands for SpMM
implementation. “*2” stands for SpMxSpM implementation. 26

Reedbush-H (U. Tokyo) is used.



TOPIC 2: DESIGNING ACCURACY
ASSURED LIBRARIES FOR REAL
SYMMETRIC EIGENPROBLEM.



LI'I'II: HIZIE

ACCURACY ASSURED
LINEAR EQUATION SOLVER

28



r':f”E-HﬂE Iterative Refinement

High-Performance Computing

 We check real answer of large-scale linear equations for liner solver
with residual iteration refinement by accurate dot product
(pseud quadratic accuracy).

« This experiment is using 1750,000 dimensions for linear equations.

« 2500 nodes (80,000 cores) of the Fujitsu PRIMEHPC FX100 in Nagoya
University is used.

« The iterative refinement procedure is: (1) an approximate answer is
obtained by using LU factorization; (2) A residual iterative refinement is
performed.

* The resultis as follows:

(First Step) Residual Norm: 4.019007e-14
(Second Step) Residual Norm: 0.000000e+00

 The above result indicates that the real answer is obtained with 2 step
iterations. This also shows that the assured procedure we propose is a
useful way for large-scale computations.

29



[fnc-rec] Solving Linear Equations

High-Performance Computing

« We evaluate assured accuracy computation for
solving linear equation. Given accuracy is improved |
by the iterative refinement procedure shown in previous slide.

 We set a real answer with (1,1,1,...,1)"T.

« 2500 nodes (80,000 cores) of the Fujitsu PRIMEHPC FX100 in
Nagoya University is used.

e Theresultis:

(1 million dimension) Upper bound of error: 1.111484e-16
(1.5 million dimension) Upper bond of error: 1.113360e-16

* The above result indicates that the obtained accuracy is
almost full for double precision computation. Hence the accuracy
assurance can be adaptable for very large-scale computations
on distributed memory supercomputers.

30



LI'I'II: HIZIE

ACCURACY ASSURED
STANDARD SYMMETRIC
EIGENPROBLEM SOLVER

31



NC-HALC

'I.I:I: Verified Numer: ical Computat ions Iterative Refinement
e (Eigenproblem)

 We made a proto type implementation of
assured accuracy library for standard symmetric
eigenproblem.

« PDSYEVD (a ScaLAPACK routine) is used for
this implementation. For test matrix, a symmetric

matrix with elements generated by uniform
distribution [0, 1].

* The Fujitsu PRIMEHPC FX100 in Nagoya
University is also used.

32



Verified Numerical Computations

LN -HRLC

High-Performance Computing

Performance Evaluation

(Varying Nodes)

FX100

n = 50,000

PDSYEVD (ScaLAPACK)
According to Fig. 4, there

is a scalability for the ratio.

This means that the ratios
of verification time to
computation time of
eigenvalue are getting
smaller according to
number of nodes.

This is a nice result to
adapt the library of
accuracy assurance to
several applications.

Computing times [s]

600 0.7
900 -

400 |

12 24 48 96
The No. of Nodes

Fig. 4 Ratios of execution time

(Tveri / Teig). Tveri stands for verification
time. Teig stands for computation time of
eigenvalues. 33



Verified Numerical Computations

LN -HRLC

IPerformance Evaluation
(Weak Scaling)

5 - - - 0.48
FX100 T N = 500, 000

n = 125,000~500,000 _ -f;‘;f;';n
PDSYEVD (ScaLAPACK)

We fix number of dimensions
per node, while number of
nodes increases. This is weak
scaling evaluation.

Fig. 5 shows that execution
time for assured accuracy
computation can be occupied 0
up t0 40%~50% to 16’%‘110 N{fzfjf Nudci‘qg
computation time of

eigenvalues. Fig. 5 Weak Scaling Result.
This is acceptable ratio for

large-scale computation.

.

N = 250, 000

o
I
g%
Ratio (Tyer

N =125, 000

Computing times [h]

10.4

0.38
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rEnE—HnE Performance Evaluation

(Accuracy)

« FX100

« n=500,000 10°

« PDSYEVD (ScaLAPACK)

* \; :i-th smaller approximate eigenvalue. 10*}

* T; tupper error bound of \; by
accuracy assurance.

» We fix number of dimensions per node,
while number of nodes increases. This
is weak scaling evaluation.

 Fig. 6 shows that upper bound of T /
calculated error is 60% at the worst. o |
This indicates that the calculated result 10“4#
is never included “duplicate i 10
eigenvalues” for the eigenproblem with
dimension of 500,000.

» We cannot proof this without the
techniques for accuracy assurance for
the eigenproblem.

Al

T‘,.g")h| = [L.B15H.:..

Fig. 6 Errors of computed eigenvalues to
real answer.
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TOPIC 3: DISCUSSING EXTENSION
TO NON-LINEAR PROBLEMS.

36



Parallel smoothed aggregation multilevel Schwarz preconditioned
Newton-Krylov algorithms for Poisson-Boltzmann problems

m Introduction

» This work aims to improve our one-level parallel tool for simulating the colloidal phenomena

modeled by the Poisson-Boltzmann equation (PBE) to a multilevel tool.
» The multilevel algorithm used the geometric mesh information to construct the multilevel

preconditioner.

» The multilevel PBE solver was built on the top of PETSc, Trilinos/ML, and METIS.

m Poisson-Boltzmann equation
» PBE is given on a 3D bounded domain € by

{ng _ exp(z¥)—exp(=ze¥) o Q.

ze+za

gp on I'p of Dirichlet boundary,
5, =20 on I'y of Neumann boundary,

<
Il

where 1 is the electric potential, z. : z, denotes the valence of cation and anion.
» Finite element method (FEM) discretizes the PDE.

m Newton-Krylov-Schwarz framework
Input: nonlinear function F(z), form Jacobians Jp(z), mesh information for Rf.
Output: approximate solution z(F)
1: define Schwarz type preconditioner M;l = Z?p(Rf)TJi_lRf.
2: while ||F(z®)|| > €,||F(z(9))|| and ||F(z(®)|| > €, and ||[Az5F|| > €5 and k < m do
3: solve M;lJp(m(k))s(k) = —M;lF(:B(k)) for s(%).
4 find X € (0,1] such that fz® + Xs(®) < f(z(®) + aAV A z(F))Ts(F).
5: (k1) o (k) 4 )\zs("’).
6 k< k+1.
37



m Smoothed aggregation multilevel Schwarz preconditioning
Input: The Jacobian matrix J, residual r, and the total number of levels L.
Output: The preconditioned residual 7.

rhe r

. for [+ L to 2 step -1 do

ul = P (RP0)T(J5)—1 R}

ri=l « (B_)T(rt — Jrud)

a e PR

5: solve JLul = r! for coarse mesh correction ul.
6: for [« 2 to L step 1 do
7: ul — ul + If_lfu,l_1

l l np E,O\T/ 1k\—1 pk,O K k..l
8 u<—u+Zi=1(Rz. ) (Jz) Ri (r’“—Ju)
9: T+ ul

m Parallel multilevel aggregation schemes

P Parallel maximal independent set (MIS): aggregates contain the nodes distributed on the
different cores.

» Uncoupled MIS (uncoupled): no distributed nodes in aggregates.

» Graph partition-based scheme (METIS): without distributed nodes in aggregates and nearly the
same size of coarse grid independed the employed cores.

Processor 0 . Processor 1 Processor 0 . Processor 1 Processor 0 . Processar 1
{7 . {7

)P 1

LC ' '@, 2 ,1 2

t)’/o ;’"/ff/f, = /,\, o M
{ \ \ L \

(b) Uncoupled (c) METIS

\
\\.
\J

A )

C
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m Numerical results: Array of charged spherical particles

» An array of charged spherical particles immersed in symmetric (1:1) or asymmetrical (1:2)
electrolytes.

» About 20 million unknowns tested on 64 to 4,006 cores on the cluster Reedbush-U in University
of Tokyo, Japan.

» Two-level and three-level preconditioner and different aggregation schemes

2-level 3-level
Aggregation np [ Newton iter. Time Eff. Newton iter. Time Eff.
scheme (A. linear) (sec.) (%) (A. linear) (sec.) (%)
4 (80) 131.1100.0 4(10.3) 121.5100.0
12 4 (75) 59.4110.4 4 (9.8) 5421121
25 4 (70) 2881138 4 (9.8) 2621159
MIS 51 4 (75) 1401171 4 (10.5)  13.8 110.0 a" o .
1,02 4 (8.5) 7.8 105.0 4 (11.3) 83 015 .‘.‘O‘,..,.#
2,04 4 (7.8) 49 836 4 (11.5) 6.8 55.8 :
s, 4 (83) 40 512 4(123) 04 202 A A A A
4 (80) 103.5100.0 4(10.3) 93.6 100.0
12 4 (78) 51.2101.1 4 (9.8) 4581022
25 4 (78) 2561011 4 (9.8) 2291022
Uncoupled | 51 4 (78) 1251027 4(10.3) 120 975
1,02 4 (9.0) 7.0 92.4 4 (10.8) 7.3 80.0
2,04 4 (7.8) 43 752 4 (9.8) 53 552
4, 4 (8.3) 36 449 4 (9.8) 6.8 215
4(143) 0441000 3(237) 7541000
12 4 (145)  46.7101.1 4(20.8) 494 763
25 4(143) 2331013 4 (185) 243 776
METIS 51 4(15.0) 122 96.7 4 (18.0) 128 736
1,02 4 (14.8) 6.8 86.7 4 (17.0) 8.1 582 v w
2,04 4 (15.0) 47 62.8 4 (16.3) 75 314
4, 4 (16.0) 38 388 4(163) 134 88 (a) 1:1 electrolytes (b) 1:2 electrolytes

39



m Parallel performance evaluation
Compared the 1-level additive nonoverlapping Schwarz preconditioner, parallel smoothed
aggregation multigrid (SAMG) preconditioner (5-level V cycle), and tuned 2-level METIS
aggregation preconditioner.
Array of charged spherical particles

One-level One-level Two-level
n block Jacobi nonoverlapping Schwarz SAMG SA Schwarz (METIS)
P N. iter. Time  Eff. N. iter. Time Eff. N. iter. Time  Eff. N. iter. Time  Eff.
(sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%)

Symmetrical 1:1 electrolytes
64 3 (1040.3) 933.6 100.0 3 (463.0) 269.2 100.0 4 (12.3) 103.1 100.0 4 (14.3) 944 100.0
128 3(1058.3) 5102 0915 3 (469.0) 130.7 103.0 4 (11.3) 50.3 1021 4 (145) 46.7 1011
256 3(1082.7) 2045 793 3 (476.0) 589 1143 4 (10.5) 251 1031 4 (143) 234 1013
512 3(1060.3) 1978 59.0 3(490.3) 292 1152 4 (10.3) 136 951 4 (15.0) 122 96.7
1,024 3 (1105.7) 2265 258 3 (517.7) 155 1085 4 (10.0) 121 53.0 4(148) 6.8 86.7
2,048 3(1180.0) 4717 6.2 3(554.7) 9.0 935 4(98) 382 9.2 4 (150) 47 628
4,096 3(1223.7) 23133 0.6 3(5723) 49 858 4(9.3) 2122 0.8 4 (16.0) 38 388
Asymmetrical 1:2 electrolytes
64 5(919.8) 13959 100.0 5(395.4) 402.1 100.0 5(11.2) 1294 100.0 5(13.2) 118.5 100.0
128 5(967.0) 7852 889 5 (403.6) 196.5 102.3 5(10.4) 632 1024 5(134) 584 1015
256 5(978.6) 4498 77.6 5(409.4) 89.2 1127 (9.6) 31.0 1044 5(134) 2838 1029
512 5(987.0) 306.9 56.9 5(420.2) 436 1153 (9.6) 165 98.0 5(142) 1438 100.1
1,024 5(984.4) 356.0 245 5(437.0) 229 109.7 (9.4) 149 543 5(140) 84 882
2,048 5(978.2) 6303 6.9 5 (462.6) 130 096.7 (8.8) 442 091 5(142) 54 686
4,096 5(972.4) 3047.0 0.7 5(481.0) 66 952 (8.6) 251.0 0.8 5(15.0) 44 421

oo

m Conclusions
We develop a multilevel version of the PBE solver by adding the smoothed aggregation
type coarse mesh space to further improve the algorithmic algorithmic scalability of the
one-level NKS algorithm.
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Future Prospects

e Topic 1: UNC-HPC libraries between multi-core and many-core
CPUs and a GPU.

— According to our results, we found several performance
changes based on computer environments, such as CPU or GPU.
In addition, sparsity of input matrix is also crucial factor.

— We need to add adaptive selection for several implementations
of Ozaki method. To establish this, auto-tuning (AT) technology
is one of promising ways.

e Topic 2: Designing accuracy assured libraries for real
symmetric eigenproblem.

— We need to develop high performance implementation of the
accuracy assured libraries for real symmetric eigenproblem
toward to distributed memory supercomputers. In particular,
adaptation of GPU computing is highly required.
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