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To understand the state of matter at very high temperature and/or
density, such as in the early universe, inside the neutron star, and in
the heavy ion collision etc., it is crucial to know the Equation of
State (EoS) of Quantum Chromo Dynamics (QCD), the fundamental
theory of strong interactions. The ultimate goal of our project is to
determine the EoS in the continuum by numerical simulations on the
basis of lattice QCD with the Wilson-type quark action. For this, we
are employing the energy–momentum tensor (EMT) and other
physical quantities defined by the gradient flow (GF) and the Small
Flow-time eXpansion (SFtX) method. We summarize achievements
we made so far by utilizing the present and past JHPCN (and other)
computational resources.

The Gradient Flow (GF) (Narayanan–Neuberger (’06), Lüscher
(’09–)) is deformation of the gluon field Aµ(x) along a fictitious time
t ≥ 0 according to a gauge-invariant diffusion-type equation

∂

∂t
Bµ(t, x) = DνGνµ(t, x), Bµ(t = 0, x) = Aµ(x),

where

Gµν(t, x) = ∂µBν(t, x)− ∂νBµ(t, x) + [Bµ(t, x), Bν(t, x)]

and
DνGνµ(t, x) = ∂νGνµ(t, x) + [Bν(t, x), Gνµ(t, x)].

This deformation Aµ(x) → Bµ(t, x) may be regarded as a diffusive
smearing of Aµ(x) over the region |x| ∼

√
8t. Remarkably, it has

been shown that any local product of the flowed gauge field Bµ(t, x)
with t > 0 automatically becomes a renormalized finite field
(Lüscher–Weisz (’11)). This property of GF can be used to construct
a universal expression for EMT [H.S., PTEP 2013, 083B03 (’13)].

The idea is that one can construct an operator of flowed fields which
coincides with EMT with dimensional regularization at t→ 0 (the
small flow-time limit); the latter satisfies Ward–Takahashi identities
associated with the translational invariance and the former is
independent of regularization adopted. In this way, one can obtain a
universal expression of EMT that is usable even in lattice QCD. In
QCD without quark fields (the quenched QCD) for which numerical
simulations are relatively less expensive, it has been confirmed that
this SFtX method works quite well as shown in
Asakawa–Hatsuda–Itou–Kitazawa–H.S. PRD90, 011501 (’14),
Kitazawa–Iritani–Asakawa–Hatsuda–H.S., PRD94, 114512 (’16),
Iritani–Kitazawa–H.S.–Takaura, PTEP 2019, 023B02 (’19).

We apply this SFtX method to the 2 + 1-flavor QCD. The
coefficients required to this computation were worked out to the
one-loop order in Makino–H.S., PTEP 2014, 063B02 (’14) and to the
two-loop order in Harlander–Kluth–Lange, Eur. Phys. J. C78, 944
(’18). This method enable us to determine EoS without additional
inputs such as the lattice beta function whose precise computation is
quite demanding. Similar idea can be applied to other physical
quantities such as fermion bi-linear operators [Hieda–H.S., Mod.
Phys. Lett. A31, 1650214 (’16)] and the topological density, etc.

In this poster, we show the results for the Nf = 2 + 1 QCD, but with
ud quarks somewhat heavier than nature (mπ/mρ = 0.63) and s
quark of the physical mass [WHOT-QCD, PRD96, 014509 (’17);
D95, 054502 (’17), arXiv:2005.00251 [hep-lat]]. In this study, we use
gauge field configurations generated by non-perturbatively
O(a)-improved Wilson quark action and the RG improved Iwasaki
gauge action. The lattice spacing is fixed to a0.07 fm. T = 0
configurations are CP-PACS+JLQCD configuration on a 283 × 56
lattice. T > 0 configurations are WHOT-QCD configurations
(323 ×Nt, Nt = 4, 6, . . . , 16).

EoS obtained by SFtX method [arXiv:2005.00251 [hep-lat]]:
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Figure: Entropy density (ϵ + p)/T 4 as function of temperature T
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Figure: Trace anomaly (ϵ− 3p)/T 4 as function of temperature T

For T ≤ 300MeV (Nt ≥ 10) with which the discretization error
O((aT )2 = 1/N 2

t ) is expected to be small, the entropy density
obtained by the SFtX method is consistent with the result of a
conventional method with much smaller statistical/systematic errors.
On the other hand, it can be seen that the trace anomaly suffers from
a large discretization error T ≤ 250MeV (Nt ≥ 8) associated with
the Equation of Motion (EoM). This point should be further studied.



Chiral condensate/disconnected chiral susceptibility
[arXiv:2005.00251 [hep-lat]]:
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Figure: VEV subtracted chiral condensate ⟨{ψ̄fψf}⟩ in the MS-scheme
at µ = 2GeV in GeV3
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Figure: Disconnected chiral susceptibility χdisc.
f̄f

in the MS-scheme at µ = 2GeV in

GeV6

For the disconnect chiral susceptibility, we see a clear peak
at T ≃ 199MeV, which indicates the pseudo-critical point. We also
note that the height of the peak looks increasing as we decrease the
quark mass from s quark to ud quarks.

Topological susceptibility [Taniguchi–Kanaya–H.S.–Umeda, PRD 95,
054502 (’17)]:
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Figure: Topological susceptibility as a function of temperature in GeV4

Gluonic and fermionic definitions of the topological susceptibility χt
agree to each other as must be the case in the continuum limit.
Power-low behavior is consistent with the dilute instanton gas
approximation (DIGA) which predicts the exponent ∝ T−8.
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