

JHPCN: 学際大規模情報基盤共同利用・共同研究拠点第17回シンポジウム

Validation of the Two-Phase Lattice Boltzmann Method for Wake Vortex-Induced Gas Entrainment

Group members:

代表者 Sitompul Yos(日本原子力研究開発機構) 副代表者 杉原健太 (日本原子力研究開発機構) 共同研究者 井戸村泰宏 (日本原子力研究開発機構) 共同研究者 渡辺勢也 (九州大学)

Purpose & Significance

- Japan plans to deploy next-generation sodium-cooled fast reactors by the 2040s. A key challenge is gas entrainment (GE) of argon cover gas.
- To predict and mitigate this geometry-sensitive phenomenon, accurate and efficient simulations are essential.
- At Japan Atomic Energy Agency (JAEA), we have developed a two-phase Lattice Boltzmann Method (LBM) for GE simulation:
 - Validated using the quasi-steady vortex problem
 - Accurately predicted velocity profiles and GE depth
 - > Highly efficient, capable of simulating up to 400 million cells using multi-GPU computation.

These results demonstrate the method's potential for large-scale reactor-relevant GE simulations.

Next Step: Dynamic GE Simulations

We aim to extend the LBM approach to wake-vortex-induced GE, a more dynamic and challenging scenario involving:

> Moving vortices, complex geometries, dynamic free surfaces

Success will mark a major step toward a modern simulation tool for future fast reactor design and safety analysis.

Research Plan

We will benchmark our two-phase LBM against the wake vortex experiment by Uchida et *al* [3]:

Phase 1: Single-Phase Simulation & Validation (First Semester)

1.1 Single-Phase Benchmarking:

> Validate single-phase LBM against experiment and simulation reference data,

Numerical Methods

We employed LBM:

 $f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\delta t, t + \delta t)$

- Perform mesh convergence studies,
- > Compare velocity, pressure fields, and vortex shedding behavior.

1.2 AMR Integration & Optimization:

- > Apply octree-based AMR with Morton curve domain decomposition,
- > Optimize data communication and reduce re-meshing overhead.

Phase 2: Two-Phase Simulation & Validation (Second Semester)

2.1 Two-Phase Benchmarking:

- Introduce gas-liquid interface,
- Simulate evolving gas cores using two-phase LBM-AMR,
- > Validate gas core trajectory and length against experimental data.

2.2 High-Resolution Simulation:

- Run high-resolution DNS of wake-vortex-induced GE,
- > Achieve unprecedented accuracy and efficiency within a few days using GPU clusters.

26 14 24 8 16 20 26 18 6 12 20 22

 $= f_{\alpha}(\mathbf{x}, t) - \frac{1}{\tau} [f_{\alpha} - f_{\alpha}^{eq}]_{(\mathbf{x}, t)}$

 f_{α} : particle distribution functions (PDFs) f_{α}^{eq} : equilibrium PDFs τ : relaxation time **x**: position, *t*: time, \mathbf{e}_{α} : lattice velocities

- Velocity based two-phase LBM mode [1],
- Cumulant collision operator,
- Phase-field LBM for interface tracking,
- CSM-LES model,
- Octree-based Adaptive Mesh Refinement (LMR) [2].

Previous Research Results

1. Wake-vortex simulation using free-surface LBM (uniform grid):

2. Quasi-steady vortex using two-phase LBM (uniform grid):

- We observed coarse results of flow profile and wake vortex induced GE, High resolution is needed to resolve vortex core \rightarrow AMR is needed,
- ➢ Free-surface cannot accurately simulate surface tension → switch to twophase model
- Image: Second systemRes.: $80 \times 128 \times 80$
 $\Delta x = 5 \text{ mm}$
GE length: ~1.3cmRes.: $160 \times 256 \times 160$
 $\Delta x = 2.5 \text{ mm}$
GE length: ~2.5cmRes.: $320 \times 512 \times 320$
 $\Delta x = 1.25 \text{ mm}$
GE length: ~4.9cmRes.: $640 \times 1024 \times 640$
 $\Delta x = 0.625 \text{ mm}$
GE length: ~8.0cmExperiment:
GE length: 11.2 cm
- Accurately predicted GE depths using fine resolution (∆x = 0.625 mm)
 Simulation of 250 s real time on 1 million cells completed in ~1 hour on 1 V100 GPU.
- ➤ Two-phase-AMR simulation of wake vortex has not been conducted
 → these will be the focus of the proposed project.

References:

Sitompul, Y. P., & Aoki, T. (2019). Journal of Computational Physics, 390, 93-120.
 Watanabe, S., & Aoki, T. Computer Physics Communications, 264 (2021):107871.
 Uchida, Mao, et al. Mechanical Engineering Journal 8.4 (2021): 21-00161.