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Fig. 1 Schematic representation of an end-to-end differentiable fluid-particle simulation setup. Direct numerical simula-
tions for a complex particle dispersion are performed to measure system property A(¢). To obtain the desired/target
results we seek to minimize a loss function of the form L(0) = Z (ASM(Q) — A2 \ith @ the system parameters.
This optimization can be efficiently performed using a gradient-based method, with the gradients computed through the

simulation via Automatic Differentiation.

Abstract

Particle dispersions (i.e., particles dispersed in a
host fluid) are ubiquitous in the physical and bio-
logical sciences, as well as for engineering ap-
plications. These systems are characterized by
long-range many-body hydrodynamic interac-
tions, which are crucial to understand their
macroscopic properties. Unfortunately, theoretical
descriptions are limited to idealized systems (e.g.,
one or two particles), leaving computer simula-
tions as the method of choice. To date, many com-
putational methods have been developed, includ-
ing Stokesian Dynamics, Lattice Boltzmann, Multi-
Particle Collision Dynamics, Fluid Particle Dy-
namics, and the Smooth Profile Method (SPM)[1].
The SPM is able to directly solve the coupled fluid-
particle dynamical equations; it can handle multi-
component non-Newtonian host fluids, arbitrari-
ly shaped particles, and it has no restriction on the
Reynolds numbers. However, the standard formu-
lation and implementation makes it unsuitable for
solving inverse problems, e.g., to optimize flow
conditions, fluid-particle affinity, or particle-par-
ticle interactions. To overcome this limitation, we
aim to build a composable and end-to-end-differ-
entiable fluid-particle simulator that can be used
to efficiently solve complex fluid/particle opti-
mization problems.

Model & Methods

Smooth Profile Method

We use the Smoothed Profile Method (SPM) to
model the fluid-particle interaction [1]. The SPM
replaces the sharp particle interface with a diffuse
one, allowing particle quantities to be defined as
fields. The coupled equations of motion are

p: density
Fluid u: velocity
. _ ‘ : stress-tensor
= (u-Vu+p 'V-o+of, o

V-u=0
R: position
Particl Q: orientation
articles V: velocity

Ri =V MZV; = F, Q: ang. velocity
. F: force

Q; = skew(Q;) - Q; J, =N, N: torque

J: ang. momentum

M: mass

¢ fp: constraint force
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Fig. 2 Schematic representation for an SPM particle
with a diffuse interface of thickness &

where u = (1 - uy + ¢u, is the total velocity
field, which includes both the fluid (uy) and parti-
cle velocity fields (up), with ¢ the phase field func-

tion that defines the particle domain (see Fig.2).
The particle velocity field is defined as

d)up(x) = Z (,bi(x)[Vi +Q; % ri]

The hydrodynamic forces/torques are computed
by assuming momentum conservation, with the

constraint force term ¢ f, introduced to maintain
particle rigidity.

Automatic Differentiation

Automatic Differentiation (AD) is a form of pro-
gram transformation that allows one to compute
the derivative of an arbitrary function f(x), as giv-
en by a program [2]. It forms the backbone of mod-
ern Machine-Learning (ML). Assuming that the
function/program under consideration can be ex-
pressed as a composition of mappings u; between
smooth manifolds

f=uyepyre-om

the Jacobian of the f transformation is given by the
(matrix) multiplication of the individual Jacobians

J:JNJN_I..JI
The JAX [3] library provides a framework for
building Python/NumPy functions that can be ar-

bitrarily composed and transformed, allowing us
to automatically compute their derivatives.

Research Plan
Our research is divided into three main themes /
components:

(A)SPM implementation : Implement the SPM in
JAX with jit and grad support. Incrementally
add support for ellipsoidal particles, arbitrarily
shaped particles, complex fluids, etc.

(B)Optimization : Parallelize the JAX code to target
multi-node / multi-GPU systems.

(C)Flow optimization : Use the new simulator to
solve inverse flow design problems, e.g., opti-
mizing processing flows and inferring particle-
particle interaction potentials.

Preliminary Results

Flow Optimization / Inference
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Fig. 3 Sample optimization problem for 2D pressure-
driven flow in a channel with a particle inclusion. The
particle position and shape are optimized to produce a
target flow velocity at the outlet. Figure adapted from
Ref [4].
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