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Abstract 
Particle dispersions (i.e., particles dispersed in a 
host fluid) are ubiquitous in the physical and bio-
logical sciences, as well as for engineering ap-
plications. These systems are characterized by 
long-range many-body hydrodynamic interac-
tions, which are crucial to understand their 
macroscopic properties. Unfortunately, theoretical 
descriptions are limited to idealized systems (e.g., 
one or two particles), leaving computer simula-
tions as the method of choice. To date, many com-
putational methods have been developed, includ-
ing Stokesian Dynamics, Lattice Boltzmann, Multi-
Particle Collision Dynamics, Fluid Particle Dy-
namics, and the Smooth Profile Method (SPM)[1]. 
The SPM is able to directly solve the coupled fluid-
particle dynamical equations; it can handle multi-
component non-Newtonian host fluids, arbitrari-
ly shaped particles, and it has no restriction on the 
Reynolds numbers. However, the standard formu-
lation and implementation makes it unsuitable for 
solving inverse problems, e.g., to optimize flow 
conditions, fluid-particle affinity, or particle-par-
ticle interactions. To overcome this limitation, we 
aim to build a composable and end-to-end-differ-
entiable fluid-particle simulator that can be used 
to efficiently solve complex fluid/particle opti-
mization problems.  

Model & Methods 
Smooth Profile Method 
We use the Smoothed Profile Method (SPM) to 
model the fluid-particle interaction [1]. The SPM 
replaces the sharp particle interface with a diffuse 
one, allowing particle quantities to be defined as 
fields. The coupled equations of motion are 

where  is the total velocity 

field, which includes both the fluid ( ) and parti-

cle velocity fields ( ), with  the phase field func-
tion that defines the particle domain (see Fig.2). 
The particle velocity field is defined as 

 

The hydrodynamic forces/torques are computed 
by assuming momentum conservation, with the 
constraint force term  introduced to maintain 
particle rigidity. 

Automatic Differentiation 
Automatic Differentiation (AD) is a form of pro-
gram transformation that allows one to compute 
the derivative of an arbitrary function , as giv-
en by a program [2]. It forms the backbone of mod-
ern Machine-Learning (ML). Assuming that the 
function/program under consideration can be ex-
pressed as a composition of mappings  between 
smooth manifolds 

 

the Jacobian of the  transformation is given by the 
(matrix) multiplication of the individual Jacobians 

 

The JAX [3] library provides a framework for 
building Python/NumPy functions that can be ar-
bitrarily composed and transformed, allowing us 
to automatically compute their derivatives.  

Research Plan 
Our research is divided into three main themes / 
components: 

(A)SPM implementation : Implement the SPM in 
JAX with jit and grad support. Incrementally 
add support for ellipsoidal particles, arbitrarily 
shaped particles, complex fluids, etc. 

(B)Optimization : Parallelize the JAX code to target 
multi-node / multi-GPU systems. 

(C)Flow optimization : Use the new simulator to 
solve inverse flow design problems, e.g., opti-
mizing processing flows and inferring particle-
particle interaction potentials. 

Preliminary Results 
Flow Optimization / Inference 
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Fig. 1 Schematic representation of an end-to-end differentiable fluid-particle simulation setup. Direct numerical simula-
tions for a complex particle dispersion are performed to measure system property .  To obtain the desired/target 
results we seek to minimize a loss function of the form , with  the system parameters. 
This optimization can be efficiently performed using a gradient-based method, with the gradients computed through the 
simulation via Automatic Differentiation.

A(t)
L (θ ) = ∑ (Asim(θ ) − Atarget)2 θ

Fig. 2 Schematic representation for an SPM particle 
with a diffuse interface of thickness .ξ
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Ṙi = Vi

Q̇i = skew(!i) ·Qi

ρ: density
u: velocity
σ: stress-tensor

ϕ fp: constraint force

R: position
Q: orientation
V: velocity
Ω: ang. velocity
F: force
N: torque
J: ang. momentum

M: mass
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Fig. 3 Sample optimization problem for 2D pressure-
driven flow in a channel with a particle inclusion. The 
particle position and shape are optimized to produce a 
target flow velocity at the outlet. Figure adapted from 
Ref. [4].
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