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1 Introduction.

Reservoir computing, a brain-inspired
machine-learning technique that employs a
data-driven dynamical system, is effective in
predicting time series and frequency spectra
in chaotic behaviors, including fluid flow and
global atmospheric dynamics |1, 2, 4, 5, 6].

In our previous work, we inferred macro-
scopic behaviors of a three-dimensional fluid flow
with chaotic behaviors by applying the same
method |2, 3.

namics constructed from only past data of en-

We show that the reservoir dy-

ergy functions can infer the future behavior of

energy functions and reproduce the energy spec-

trum. In our procedure of the inference, we as-
sume no prior knowledge of a physical process of
a fluid flow except that its behavior is complex
but deterministic. It is also shown that we can

infer a time-series data from only one measure-

ment by using the delay coordinates. These 1im-
ply that the obtained two reservoir systems con-
structed without the knowledge of microscopic
data are equivalent to the dynamical systems
describing macroscopic behavior of energy func-
tions. It should be remarked that such dynam-
ical systems describing macroscopic behaviors
cannot be derived from the Navier—Stokes equa-

tion.

2 Reservoir computation.

What’s Reservoir computation?

e a relatively high-dimentional fixed neural-
network composed of simple nonlinear dy-
namical systems

e determination of output layer

Lorenz

e For system and Kuramoto—

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

(O 1st step (generating a reservoir vector)

r(t+ At) = (1 — a)r(t) + atanh(Ar(t) + Winu(t)).
A, Win:

eigenvalue is controlled.

sparse random matrix, whose maximal

r € RY: reservoir vector

N: dimension of reservoir vector
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Figure 1: Schematic picture of a reservoir

computing (training phase)

(O 2nd step (determination of output layer)
We determine Wy s.t.

t<T  Wowr(t+ At) = s(t + At).

= Determine it s.t. the form is minimized:

D (Wouer(1AL)) — sUAL)]* + BITT(Wout Wou)].

2.2 Procedure of inference.

Using the W}, we infer the time-series s.
é(t) — W;utr(t)
r(t+ At) = (1 — a)r(t)

r(t)

atanh(Ar(t)

Winé(t)).

determined

Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-driven

model of u.

3 Our previous work

Energy functions:

1

Bo(k.t) = 5 | |1Fu(K.0PdK,
k

where D, = {K € R° | k- 05 < |K| <
k 4+ 0.5}. To get rid of the high-frequency fluc-

tuation, we take short-time average FE(k,t) =
S Eo(k,s)/100. Then, E(k,t) is the nor-

s=t—99At
malized value of each variable F(k,t).
In the training phase for t € (0,7T], WJ; is deter-

mined by setting
u<t) — (E(Sa t)v E(Sat o AT)? to 7E(37t o QSAT))ta
S(t) — (E(ga t)7 E(Bat o AT)? to 7E(37 t — QSAT))ta

where AT = 2.5. In short, we construct a model in-
ferring F'(3) using only F(3) with delay coordinates

at the previous step.

(O Inference of time-series of E (k).

When t—T' < 100, inferred time-series data obtained
from our reservoir system (red line) almost coincides
with that of reference data obtained from the DNS
of NS (blue line).
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4 Qur project.

We consider the following equation:

r(t+ At) = (1 —a)r(t) + atanh(Ar(t) + Winu(t) +£1),

£: a scalar constant

1=(1,1,,,,,1)".

£1 can reduce the dimension N of reservoir com-
puting. We will clarify the least number of N to
describe the same dynamics and use it to construct
a data-driven model of fluid flow.

We had previously considered the following:
Wour(t + At) = s(t + At).

By adding a quadratic term as the second term of
the left hand side, the accuracy of the prediction is

increased |[7].
Woutt(t + At) + 1(t)  Whewr(t) = s(t + At).

We use the term to construct a data-driven model
of fluid flow.
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