
[jh250021]

High quality modeling of fluid dynamics

using reservoir computing

Yoshitaka Saiki (Hitotsubashi University)

Kengo Nakai (Okayama University)

1 Introduction.

Reservoir computing, a brain-inspired

machine-learning technique that employs a

data-driven dynamical system, is effective in

predicting time series and frequency spectra

in chaotic behaviors, including fluid flow and

global atmospheric dynamics [1, 2, 4, 5, 6].

In our previous work, we inferred macro-

scopic behaviors of a three-dimensional fluid flow

with chaotic behaviors by applying the same

method [2, 3]. We show that the reservoir dy-

namics constructed from only past data of en-

ergy functions can infer the future behavior of

energy functions and reproduce the energy spec-

trum. In our procedure of the inference, we as-

sume no prior knowledge of a physical process of

a fluid flow except that its behavior is complex

but deterministic. It is also shown that we can

infer a time-series data from only one measure-

ment by using the delay coordinates. These im-

ply that the obtained two reservoir systems con-

structed without the knowledge of microscopic

data are equivalent to the dynamical systems

describing macroscopic behavior of energy func-

tions. It should be remarked that such dynam-

ical systems describing macroscopic behaviors

cannot be derived from the Navier–Stokes equa-

tion.

2 Reservoir computation.

What’s Reservoir computation?

• a relatively high-dimentional fixed neural-

network composed of simple nonlinear dy-

namical systems

• determination of output layer

• For Lorenz system and Kuramoto–

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

⃝ 1st step (generating a reservoir vector)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winu(t)).

A,Win: sparse random matrix, whose maximal

eigenvalue is controlled.

r ∈ RN : reservoir vector

N : dimension of reservoir vector
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Figure 1: Schematic picture of a reservoir

computing (training phase)

⃝ 2nd step (determination of output layer)

We determine Wout s.t.

∀t < T Woutr(t+∆t) ≈ s(t+∆t).

⇒ Determine it s.t. the form is minimized:

L∑
l=1

∥(Woutr(l∆t))− s(l∆t)∥2 + β[Tr(WoutW
T
out)].

2.2 Procedure of inference.

Using the W∗
out, we infer the time-series s.

ŝ(t) = W∗
outr(t)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winŝ(t)).
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Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-driven

model of u.

3 Our previous work

Energy functions:

E0(k, t) :=
1

2

∫
Dk

|F[v](K, t)|2dK,

where Dk := {K ∈ R3 | k − 0.5 ≤ |K| <

k + 0.5}. To get rid of the high-frequency fluc-

tuation, we take short-time average E(k, t) =∑t
s=t−99∆t E0(k, s)/100. Then, Ẽ(k, t) is the nor-

malized value of each variable E(k, t).

In the training phase for t ∈ (0, T ], W∗
out is deter-

mined by setting

u(t) = (Ẽ(3, t), Ẽ(3, t−∆τ), · · · , Ẽ(3, t− 23∆τ))t,

s(t) = (Ẽ(3, t), Ẽ(3, t−∆τ), · · · , Ẽ(3, t− 23∆τ))t,

where ∆τ = 2.5. In short, we construct a model in-

ferring E(3) using only E(3) with delay coordinates

at the previous step.

⃝ Inference of time-series of E(k).

When t−T < 100, inferred time-series data obtained

from our reservoir system (red line) almost coincides

with that of reference data obtained from the DNS

of NS (blue line).
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4 Our project.

We consider the following equation:

r(t+∆t) = (1−α)r(t)+α tanh(Ar(t)+Winu(t)+ ξ1),

ξ: a scalar constant

1 = (1, 1, , , , , 1)T .

ξ1 can reduce the dimension N of reservoir com-

puting. We will clarify the least number of N to

describe the same dynamics and use it to construct

a data-driven model of fluid flow.

We had previously considered the following:

Woutr(t+∆t) ≈ s(t+∆t).

By adding a quadratic term as the second term of

the left hand side, the accuracy of the prediction is

increased [7].

Woutr(t+∆t) + r(t)TW∗
Qoutr(t) ≈ s(t+∆t).

We use the term to construct a data-driven model

of fluid flow.
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