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Overview

Background: Recommender systems have been integrated into e-commerce platforms, news websites, and other online services.
e Personalized Recommendations: Tailored to reflect individual user behavior.

e Awareness of Social Issues: Addressing concerns such as privacy, filter bubbles, and fairness.
Many methods utilize neural network models like Graph Neural Networks (GNN) and Transformers to capture complex user behaviors and hidden intentions.

e Recently, Large Language Models (LLMs) and other Transformer-based models can leverage text datasets, such as descriptions and user reviews.
e However, the application of LLMs in recommender systems is still developing, with unresolved issues including improving recommendation accuracy and comparing their

effectiveness to existing models like GNNs and Transformers.

Research Goal: Explore models and algorithms that can enhance LLM-based recommender systems.

1. Utilize LLMs to predict the sustainability of interest and relevance of items and make recommendations based on these predictions.
2. Optimize the encoding of numerical information for LLM-based recommender systems.

3. Develop a Multi-Behavior Recommendation model based on LLMs.

Unified Recommender Model for E-Commerce POPK: Enhancing Diversity and Accuracy in News
Recommender Systems

Background: o
Contributions:

e In e-commerce and other recommender systems, "tail items"—products purchased by
only a small number of users—pose a significant challenge.

e Although auxiliary behavior data (such as browsing and favorites) can provide
additional insights, they often introduce irrelevant noise, complicating the accurate
modeling of user behavior.

1. A straightforward yet efficient strategy to mitigate the impact of popular news
articles, subsequently improving existing methods in terms of both diversity and
accuracy;

2. Demonstrations highlighting that POPK not only significantly enhances the
performance of leading models across various metrics but also offers flexibility for
easy adaptation to individual cases;

Proposal: Unified Model for Recommender Systems 3. Thorough experiments conducted on real-world data to validate the efficacy of

Multi-oehavior Recommendation (MBR) model that integrates LLM, GNN and POPK.

Transformer models with textual auxiliary behavioral data for more precise user

behavior representation.

1. Data Preprocessing & Encoding: Convert user/item attributes and user-item
interaction records (browsing and purchases) into different data structures, such as
natural language text, graph structures, and time-series sequences.

2. Enhanced LLM: Pretrain LLMs using textual datasets, incorporating knowledge like

Overall Idea

e Our proposed method, POPK, is based on the idea that popular news articles
always compete for attention, even if they are not explicitly present in the user's
impression list. Typically, recommender systems are trained using a negative
sampling strategy, where for each positive news article, k negative news articles are
selected from the user's impression list.
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sequential recommendation. Future studies will look into the theoretical analysis.
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