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The Elucidation of Non-equilibrium States of Catalysis by 
Machine Learning Aided Atomic Simulations

B. BACKGROUND

A. OVERVIEW

Atomic-level description of non-equilibrium
states of catalysis are investigated by machine
learning aided-atomic simulations.

Multi-scale simulation enable big
length-scale and long time-scale
with first-principles accuracy.

C. METHODOLOGY & PRELIMINARY (PUBLISHED) RESULTS

E. REFERENCES

v Connect the MLMD to higher scale simulations such as Kinetic Monte Carlo to enable better comparison to experiments.
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v Improve the database to include the other species relevant to methanol synthesis: CO2, HCOO, HCOOH, CH3OH, H2O, etc.

v Design a new catalyst for the methanol synthesis based on the knowledge obtained from the multi-scale simulations.

v Perform long-time and large-scale MLMD simulations to provide explicit “molecular movie” of the catalysis.

The simulations combines physics, 
chemistry, material science, chemical 
engineering, and data science.

Machine learning is used as a bridge
between the first-principles calculations 
and higher scale simulations.

Ø MLMD has successfully elucidated the structure and 
formation proves of Cu-Zn surface surface alloy.

B. BACKGROUND (continued)

The challenge of the non-equilibrium states of catalysis 

Objective: elucidate the behavior of catalysis at non-equilibrium states
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Ø CO-decorated Cu clusters are formed within 100 ns when the surface is exposed to CO.
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#2 The MLMD simulations of  CO-induced formation of Cu clusters

ReactantEn
er

gy

Non–equilibrium states
Adsorption

Product

Reaction Pathway

???

Catalyst surface
(solid)

(gas)

(gas)CO2

CO
H2

CH3OH

no catalyst

with catalyst

Cu/ZnO/Al2O3Synthetic Gas
(CO / CO2 / H2)

Methanol
(CH!OH)200 – 300 oC

CO2 Hydrogenation to Methanol

Catalysis is chemical reactions facilitated by 
external material known as “catalyst”.

Heterogenous → multi-phases are 
involved (e.g., gas and solids)

Better understanding in catalysis well contributes in energy & environments.
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v Constructing Machine Learning Force Field

v The Implementation of  Machine Learning Molecular Dynamics
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2. Run active and 
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simulation
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4 Analyze the results

1. Use the 
simulation result as 
feedback to 
improve DB.

2. Extract the 
properties of non-
equilibrium states 
of catalysis

✿ All adsorbates present in the methanol synthesis and diamond-metal system are included: CO2, O2, CO, 
HCO,CHO, HCOO, HCOOH, CH3OH, H2O, etc.  

Initial positions

New positions

Force field Atomic forces

Verlet Alg. 

v Machine Learning Aided Multi-scale Simulation
DFT Calculation
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Machine Learning Force Field

v The Research Plan in Elucidating Non-equilibrium States
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v Regression in Machine Learning  by Artificial Neural Network

Database

v Preliminary (Published) Results

Regression

Halim, H. H.; Morikawa, Y. ACS Phys. Chem. Au 2022, 2 (5), 430–447. 
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Initially most of the Zn 
attach to the step edge

Zn incorporate the upper 
and lower terrace

Some Zn atoms are 
incorporated at middle terrace

Ø The simulations at 450 K to 550 K show Cu clusters are formed within a hundred of ns 
when the Cu surface is exposed with CO.
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