

The Elucidation of Non-equilibrium States of Catalysis by Machine Learning Aided Atomic Simulations

Harry H. Halim A, John I. G. Enriquez A, Nguyen T. Bao Anh A, and Yoshitada Morikawa A

Dept. of Precision Engineering, Grad. School of Engineering, Osaka University

A. OVERVIEW

C. METHODOLOGY & PRELIMINARY (PUBLISHED) RESULTS

Atomic-level description of non-equilibrium states of catalysis are investigated by machine learning aided-atomic simulations.

Multi-scale simulation enable big length-scale and long time-scale with first-principles accuracy.

Machine learning is used as a bridge between the first-principles calculations and higher scale simulations.

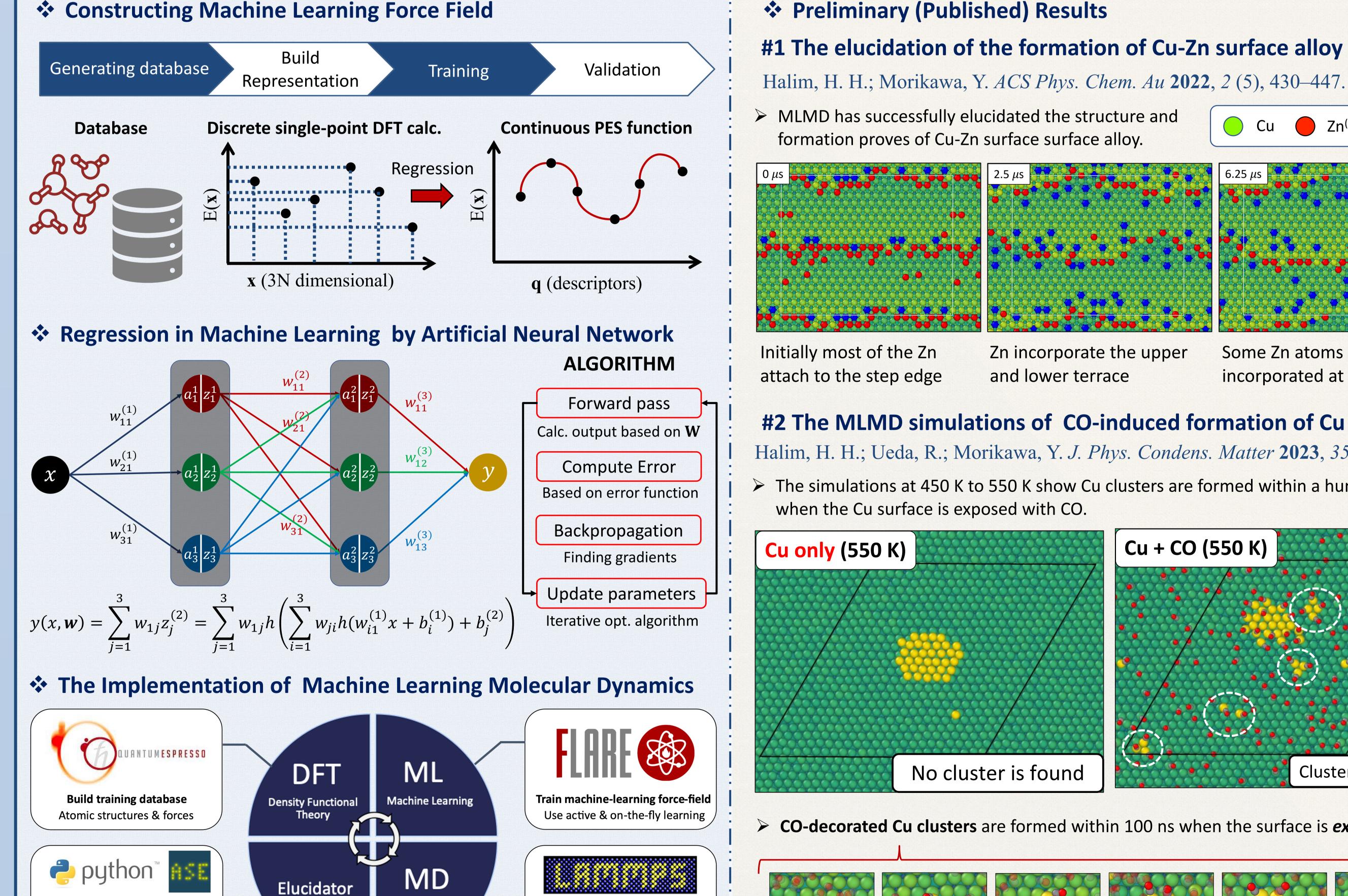
The simulations combines physics, chemistry, material science, chemical engineering, and data science.

B. BACKGROUND Catalysis is chemical reactions facilitated by with cat external material known as "catalyst". CH₃OH **Heterogenous** → multi-phases are CO **Product** CO_2 H_2 involved (e.g., gas and solids) (gas) Reactant **CO₂ Hydrogenation to Methanol** (gas) Non-equilibrium states Adsorption Cu/ZnO/Al₂O₃ Methanol Synthetic Gas $(CO / CO_2 / H_2)$ 200 – 300 °C Catalyst surface (CH₃OH)(solid) **Reaction Pathway** Better understanding in catalysis well contributes in energy & environments.

B. BACKGROUND (continued) The challenge of the non-equilibrium states of catalysis Simulation tools ➤ Surface Evolution <</p> "The alloying . Closer to surface defect" effect" Element Non-equilibrium MC/KMC states Acchiacy **Adsorbate-adsorbate Surface-adsorbate** Interaction Interaction "Adsorbate-induced "The co-adsorption effect" surface transformation"

Machine Learning Aided Multi-scale Simulation **Machine Learning Force Field DFT Calculation Atomic forces** Force field Initial positions "Bridge" Verlet Alg. High scale simulation New positions ✓ First-principles level of accuracy ✓ Efficient for large system and long time scale

Objective: elucidate the behavior of catalysis at non-equilibrium states The Research Plan in Elucidating Non-equilibrium States **Train ML to Build Launch Simulation** Analyze the results **Build Training** Database (DB) Interatomic -1. Use the 1. Run Molecular **Potential** 1. Build DB for the simulation result as Dynamics (MD) feedback to clean surface. Simulation based on 1. Use Gaussian improve DB. Process and **ML** Potential 2. Build DB for Neural Network. surface + 2. Validate the 2. Extract the 2. Run active and adsorbates. accuracy of the properties of nonon-the-fly learning equilibrium states simulation scheme. of catalysis



Zn incorporate the upper Some Zn atoms are incorporated at middle terrace and lower terrace **#2** The MLMD simulations of CO-induced formation of Cu clusters Halim, H. H.; Ueda, R.; Morikawa, Y. J. Phys. Condens. Matter 2023, 35 (49), 495001. The simulations at 450 K to 550 K show Cu clusters are formed within a hundred of ns when the Cu surface is exposed with CO. Cu + CO (550 K)No cluster is found Clusters are **found**! > CO-decorated Cu clusters are formed within 100 ns when the surface is exposed to CO. $Cu_3(CO)_3$ $Cu_6(CO)_5$ $Cu_4(CO)_4$ $Cu_5(CO)_5$ $Cu_2(CO)_2$ $Cu_7(CO)_6$

D. ONGOING WORK & FUTURE PLAN

Perform Machine Learning

Molecular Dynamics (MLMD)

Get trajectories of atoms

- **❖ Improve the database** to include the other species relevant to methanol synthesis: CO₂, HCOO, HCOOH, CH₃OH, H₂O, etc.
- Perform long-time and large-scale MLMD simulations to provide explicit "molecular movie" of the catalysis.

Analysis tools

Analyze the non-equilibrium states

> Elucidate the reaction networks

Search most effective active sites

Measure the reaction rates, etc.

- Connect the MLMD to higher scale simulations such as **Kinetic Monte Carlo** to enable **better comparison to experiments**.
- Design a new catalyst for the methanol synthesis based on the knowledge obtained from the multi-scale simulations.

Molecular

Dynamics

E. REFERENCES

[QE] Giannozi. P., et.al, J. Phys. Condens. Matter, 21 (2009) 39550. [FLARE] Vandermause. J., et.al, npj Comput Mater, 6 (2020) 20. [LAMMPS] Thompson, A.P., et al., Comp Phys Comm, 271 (2022) 10817. [ASE] Larsen A. H., et al., J. Phys.: Condens. Matter. 29 (2017) 273002.