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1 Introduction.

Reservoir computing, a brain-inspired

machine-learning technique that employs a

data-driven dynamical system, is effective in

predicting time series and frequency spectra

in chaotic behaviors, including fluid flow and

global atmospheric dynamics [1, 2, 4, 5, 6].

The extent to which a data-driven model us-

ing reservoir computing can capture the dynam-

ical properties of original systems should be de-

termined. Lu et al. [1] reported that a data-

driven model has an attractor similar to that of

the original system under an appropriate choice

of parameters. Nakai and Saiki [3] confirmed

that a single data-driven model could infer the

time series of chaotic fluid flow from various ini-

tial conditions. They suggested that a data-

driven model could reconstruct the attractor of

the original dynamical system.

In our project, we analyze a data-driven model

constructed using reservoir computing from a

dynamical system point of view. In particu-

lar, we focus on reconstructing the geometric

structure. We investigate that the Lyapunov

spectrum of the actual dynamical system un-

derlying the training data, including the nega-

tive exponents, is reproduced within a relatively

small subspace in the machine learning model

obtained through reservoir computing.

2 Reservoir computation.

What’s Reservoir computation?

• a relatively high-dimentional fixed neural-

network composed of simple nonlinear dy-

namical systems

• determination of output layer

• For Lorenz system and Kuramoto–

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

⃝ 1st step (making a reservoir vector)

Making a reservoir vector r(t) correspond to de-

composition of the input data u by using non-

linear function tanh:

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winu(t)).

A,Win: sparse random matrix, whose maximal

eigenvalue is controlled.
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Figure 1: Schematic picture of a reservoir

computing (training phase)

⃝ 2nd step (determination of output layer)

We determine Wout s.t.

t
∀
< T Woutr(t+∆t) ≈ s(t+∆t).

⇒ Determine them s.t. the form is minimized:

L∑

l=1

∥(Woutr(l∆t))− s(l∆t)∥2 + β[Tr(WoutW
T

out)].

2.2 Procedure of inference.

Using the W∗

out, we infer the time-series s.

ŝ(t) = W∗

outr(t)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winŝ(t)).
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Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-driven

model of u.

3 Our project.

The first example is the data-driven model of the

Lorenz [7], a dissipative N -dimensional ODE which

is a model of some oscillating scalar atmospheric

quantity described as

dxk

dt
= xk−1(xk+1−xk−2)−xk+f, for k = 1, . . . , N,

(1)

where the system has cyclical symmetry so xN+k =

xk for all k = 1, . . . , N , and where f is a forcing

parameter.

We analyze machine learning models obtained

through reservoir computing using examples such as

high-dimensional Lorenz systems, which are often

used in the field of meteorology. There are some pa-

rameters that need to be artificially set in machine

learning (so-called hyperparameters), and we aim to

clarify the reproducibility of these settings and the

structures.
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Figure 3: Short time inference of a variable of the

Lorenz-96 system
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Figure 4: Autocorrelation functions for the

data-driven model and the actual system of the

Lorenz-96 system.
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Figure 4: Lyapunov spectrum of the Lorenz-96

system.
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