代表：星野哲也，河合直聡，片桐孝洋（名大），塙敏博（東大），伊田明弘（JAMSTEC）

研究背景•目的

- メモリ階層の深化，CPUのメニーコア化，GPUの導入など，計算機が多様化•複雑化
- アプリケーションの性能に影響を及ぼすパラメータも複雑化
- ピーク性能やメモリ性能はもちろん，ベクトル長と命令レイテンシの大きさ，キャッシュの速度やサイズ， コア間の通信レイテンシ，ノード間の通信レイテンシなど
- アプリケーションの最適化は専門家でも難しくなって来ている
- 計算機の性能モデリングはアプリケーションの手動•自動最適化，計算機の開発•導入において重要
- マイクロベンチマークレベルでの評価はよく行われているが，幅広くより実用的•先端的なアプリケーショ ンを用いた，様々なアーキテクチャにおける性能モデリングは十分でない
- 目的：アプリケーションの性能理解や自動最適化に有用な性能モデルの開発
- ハードウェアをメモリ性能と演算性能で単純化したルーフラインモデルは，ルーフラインに至らない最適化途上のアプリケーションの性能律速原因の理解に適さない
\rightarrow ハードウェアの複雑性やアプリケーションの特性を考慮した，人間にわかりやすい性能モデルが必要
－ハードウェアの複雑化に伴い，自動最適化におけるパラメータ探索空間が増加
\rightarrow 探索空間を狭めるための，自動最適化向けの性能モデルが必要

研究実施項目

- マイクロベンチマークによる性能評価
- メモリ性能，キャッシュ性能，コア間通信レイテン シ等の計測
- 実アプリケーションでの性能モデリングに活用
- ステンシル計算の時空間ブロッキング
- ステンシルカーネルのパラメータ（次元数，近傍セ ルの参照点数，各セルの物理量など）
－時空間ブロッキングのパラメータ（空間ブロック形状・サイズ，時間ブロッキングサイズなど）
－プロセッサのパラメータ（キャッシュサイズ・速度 メモリ性能，演算性能，コア間レイテンシなど）
－上記を踏まえた性能モデルの構築
低精度演算を含む非線形ソルバ
－精度影響が小さい計算カーネルの一部の低精度化は ，速度の向上に変換によるオーバーヘッド（変換そ のもののコスト，変換による最適化の阻害）が伴う
- 低精度計算適用による性能の予測モデル
- 階層型行列演算の性能モデル
- 階層型行列のパラメータ（低ランク部分行列のサイ ズ・ランク数，小密行列の数など）は解析対象の形状によって大きく異なり，構築するまでわからない
－階層型行列パラメータや実行するプロセッサによっ
て適用すべき最適化手法が異なる
- 自動最適化への応用
- 性能モデルの自動最適化への応用手法の検討
- 自動最適化ツールであるppOpen－ATへの取り込み

