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1 Introduction.

Reservoir computing, a brain-inspired

machine-learning technique that employs a

data-driven dynamical system, is effective in

predicting time series and frequency spectra

in chaotic behaviors, including fluid flow and

global atmospheric dynamics [1, 2, 4, 5, 6].

The extent to which a data-driven model us-

ing reservoir computing can capture the dynam-

ical properties of original systems should be de-

termined. Lu et al. [1] reported that a data-

driven model has an attractor similar to that of

the original system under an appropriate choice

of parameters. Nakai and Saiki [3] confirmed

that a single data-driven model could infer the

time series of chaotic fluid flow from various ini-

tial conditions. They suggested that a data-

driven model could reconstruct the attractor of

the original dynamical system.

In our project, we analyze a data-driven model

constructed using reservoir computing from a

dynamical system point of view. In particular,

we focus on reconstructing fluctuations of un-

stable dimensions in time development. High-

dimensional chaotic dynamics are believed to

have heterochaos, namely, the coexistence of

dense sets of periodic orbits of different unstable

dimensions. The property is one of the sources

of structural instability, and it is interesting to

investigate whether the property can be recon-

structed by data-driven modeling. Data-driven

models we analyze are those of the 96-Lorenz

system and the macroscopic fluid flow.

2 Reservoir computation.

What’s Reservoir computation?

• a relatively high-dimentional fixed neural-

network composed of simple nonlinear dy-

namical systems

• determination of output layer

• For Lorenz system and Kuramoto–

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

⃝ 1st step (making a reservoir vector)

Making a reservoir vector r(t) correspond to de-

composition of the input data u by using non-

linear function tanh:

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winu(t)).

A,Win: sparse random matrix, whose maximal

eigenvalue is controlled.
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Figure 1: Schematic picture of a reservoir

computing (training phase)

⃝ 2nd step (determination of output layer)

We determine Wout s.t.

t∀ < T Woutr(t+∆t) ≈ s(t+∆t).

⇒ Determine them s.t. the form is minimized:

L∑
l=1

∥(Woutr(l∆t))− s(l∆t)∥2 + β[Tr(WoutW
T
out)].

2.2 Procedure of inference.

Using the W∗
out, we infer the time-series s.

ŝ(t) = W∗
outr(t)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winŝ(t)).
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Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-driven

model of u.

3 Our project.

The first example is the data-driven model of the

Lorenz [7], a dissipative N -dimensional ODE which

is a model of some oscillating scalar atmospheric

quantity described as

dxk

dt
= xk−1(xk+1−xk−2)−xk+f, for k = 1, . . . , N,

(1)

where the system has cyclical symmetry so xN+k =

xk for all k = 1, . . . , N , and where f is a forcing

parameter.
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Figure 3: Short time inference of a variable of the

Lorenz-96 system
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Figure 4: Density distribution of a variable.
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Figure 5: Short time inference of a variable of the

fluid flow
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