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Abstract 
Soft Matter systems are characterized by a hierarchy of 
length- and time-scales, in which the dynamics of the 
microscopic constituents are intricately coupled to the 
macroscopic dynamics. Examples include colloidal dis-
polymeric materials, colloidal dispersions, and cellular 
tissues, among others. Our goal is to develop physics 
informed Machine Learning (ML) methods to solve sev-
eral characteristic flow problems encountered in Soft 
Matter: (A) Learning the constitutive relation of entan-
gled polymer melts, (B) learning solutions to the Stokes 
flow equation, and (C) learning efficient swimming 
strategies  for active particles navigating complex flows.  

Theme A is focused on learning constitutive relations to 
accelerate multi-scale simulation methods, with the 
hope of better understanding and optimizing polymer 
processing flows used in industry. Theme B is focused on  
developing a general Stokes flow solver, to be used for 
systems with complex fluids and boundaries, as well as 
noisy/missing data, where traditional methods fail. 
Theme C is focused on understanding how the collective 
dynamics of hydrodynamically interacting particles 
emerges from low-level individual behaviours.  

Principal Models & Methods 

Gaussian Process (GP) Regression 

Let  and  denote two arbitrary functions. Without loss of 
generality, we can place a GP prior on the joint distribution, 
such that the probability of observing both   and  is[1] 

 

with  the average, and  the covariance matrices. If  is 
known, we use this information to update our conditional dis-
tribution for . This conditional distribution is another GP.  

 

Since GP are closed under linear operations, we can incorporate 
knowledge of the physics of our problem in the structure of the 
GP. For  Stokes flow, this gives rise to the following GP 

 

 

from which we can compute the posterior distribution for the 
velocity  and pressure  fields inside the domain, condi-
tioned on the velocity  (pressure ) at the boundaries, to-
gether with the enforcement of the Stokes ( ) and incom-
pressibility ( ) conditions. All correlation matrices can 
be expressed in terms of , , and . 

 

Macroscopic Flows 

We use a Smoothed Particle Hydrodynamics (SPH) description 
to model the flow of polymeric melts (A). The fluid is discretized 
into fluid particles carrying mass, momentum, energy, etc. The 
momentum equation for the -th particle is 

                

For the coupled particle-fluid simulations (C) we use the Smooth 
Profile Method[2] to solve the full Navier-Stokes equation 

 

with  and  the density and viscosity of the host fluid, respec-
tively, and  a constraint force to enforce particle rigidity. 

Microscopic Polymer Dynamics  

We will learn the constitutive relations of non-isothermal and 
isothermal flows. While special focus will be given to the Doi-
Takimoto (DT) dual-slip link model, the canonical polymer 
entanglement model, we will also consider Dumbbell/Rouse 
and Kremer-Grest models. In the DT model, the entangled 
polymer chain is represented as a primitive path with slip-links. 
The primitive path corresponds to the limited motion area of 

the chain, whereas a slip-link is the entanglement point that 
couples with a slip-link on another chain. The model includes 
several different relaxation mechanisms and has shown excel-
lent predictive capabilities[3]. 

Research Plan 
(A) Learning constitutive relations of entangled polymers: 
Extend our learning method to entangled polymer melt[4]. Par-
allelize / Optimize our MSS code to to scale up to  fluid 
particles in 3D, to validate our learning. To allow for exact in-
ference of 3D constitutive relations, with  training 
points, we will implement GPyTorch's Black-Box Matrix Matrix 
multiplication (BBMM) algorithm into our custom GP+JAX code. 

(B) Learning solutions to the Stokes equation: Use Physics 
Informed GP to perform one-shot learning of Stokes flow prob-
lems. The underlying GP covariance matrix, specifying correla-
tions between velocities, pressures and forces contains fourth-
order kernel derivatives, for which we will use JAX's automatic 
differentiation + JIT capabilities. Perform exact inference of 3D 
flows again requires the use of BBMM (A). 

(C) Learning optimal swimming strategies: Use a combined 
deep Q-Learning + hydrodynamics solver to learn the optimal 
control strategies for swimmers in complex flows. This requires 
that we implement force (torque) free actions that the swimmer 
can take in response to covariant measurements of physically 
meaningful local variables. 

Preliminary Results 
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Fig. 2. Representation of the Doi-Takimoto dual slip-link 
model. 

Fig. 1. Schematic representation of the three different flow problems (themes) and learning we will consider.  (A) Learning constitu-
tive relations of entangled polymer flows for accelerated Multi-Scale-Simulations, (B) learning the solutions to the Stokes flow 
problem, and (C) learning optimal control strategies for microswimmers.

Fig. 2. (top) Poiseuille flow through a channel using full 
MSS (dotted) and GPMSS (solid) for different positions. 
(bottom) GPStokes  prediction for 2D pressure driven 
flow past a cylinder.
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