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Outline
Introduction

Summary and future work

Performance portable implementation
Testing of MPI + X with a kinetic plasma simulation code
Preparation for exascale city wind flow simulations

Surrogate models for CFD simulations
Rapid prediction of plume dispersion based with CNN + Transformer

Large scale computational fluid dynamics (CFD) simulation
Performance portable implementation for exascale readiness
Scalable data analysis method for exascale simulations

In situ machine learning with loose coupling
In-situ incremental PCA on large scale simulation data
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Preparation for exascale systems 

SUMMIT
NVIDIA V100

Frontier
AMD MI250X

Aurora
Intel Ponte Vecchio

Language Directives/Higher level abstractions

+
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Objective: compare stdpar with other frameworks

Evaluate performance portability across CPUs and GPUs 

Language Directives/Higher level abstractions

Objectives
Explore the GPU implementation with C++ parallel algorithm

Maximize readability and productivity 

Comparison with other frameworks

VS



5

2D-2V Vlasov case: Mini-application for  kinetic equation
Problem size: 128^4
#Iterations: 128

[1] G. Strang, et al, SIAM Journal on Numerical analysis (1968)
[2] Y. Asahi et al., OpenACC meeting, September, Japan
[3] Y. Asahi et al., waccpd (SC19), November, US
[4] https://github.com/yasahi-hpc/vlp4d

4D advection with Strang splitting [1] Velocity space integral (4D to 2D)
appeared in Poisson equation

stdpar version is quite competitive
Y. Asahi et al, to be submittedreadability improved with mdspan



Most of the computational kernels 
have been ported successfully
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Exascale city wind flow simulation with CityLBM
Strong scaling up to 360 A100 GPUs AMD GPU readiness with HIP

Oklahoma 5.8x5.8x0.8km with 1m grid
Good scalability with process mapping

Frontier
AMD MI250X

Achieving a real time high-resolution simulations 
(1m) with ensemble data assimilation.

Exascale city wind flow simulations on Frontier

Additional optimization needed for the AMR 
interpolation kernels (AMR_F2C, AMR_C2F) 
which involves irregular memory accesses
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Emergence plume dispersion prediction in an urban area

Rapid prediction of the dispersion of harmful substances in an urban area

“Real time” numerical simulation requires enormous computational costs [1]

Deep learning based surrogate model for rapid and accurate prediction
[1] N. Onodera, et al, 2021
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Simulation settings and dataset

Release points are set randomly
Release points

u (time averaged)

Simulation for Oklahoma City: uniform flow condition (nudging at edge)

(Fixed) stations 

v (time averaged)

Train Val Test

650 cases with random flow directions

Vertical profiles of u, v given by power law

25 tracer particles released in each case
3 distinguish time window
650 (cases) x 25 (plumes) x 3 (time widows) 
= 37500
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CityTransformer for dispersion prediction
Input

Building shapes Release point

Output
Plume dispersion Binary map

Monitoring time series data of flows 
and concentration

Img2Img translation by CNN

Encoding time series data by Transformer

PyTorch and horovod (V100 x 4)

Plume concentration prediction 
from building shapes and monitoring time 
series data 
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Transformer VS. MLP: using the time variation

CNN/Transformer: Using the time varying monitoring data

CNN/MLP: Using the time averaged monitoring data

Both model gives reasonable prediction (mostly in the range of FAC2)

Better performance of Transformer version: importance of time variance 
to improve the performance

Transformer MLP

Y. Asahi et al, under review
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Analyzing 5D gyrokinetic simulation data
1D time series 3D time series 5D time series

~kB

Structures of 
radial profile

Structures of Fluid 
moments 

~10MB ~10GB

Phase structure

Conventional study This work

Conventional Study: 3D structures (like convective cells), 1D structures 
(stair case, stiffness in temperature gradient)

This work [1]: Extracting phase space structure from the time series of 
5D distribution function (pattern formation in phase space)

High dimensional + huge data

[1] Y. Asahi, et al., PoP, (2021)



Principal component analysis of distribution function
Analyzing 6D (3D space x 2D velocity x time) Terabyte data using Dask+Xarray

Samples Features

PCA

coefs

bases 
(w = 0)

Input Output

Easily manage out-of-memory data (> 1TB) 
without MPI parallelization
Interpretable PCs: Magnetic geometry (PC 0), 
Ballooning modes (PC 1, 2)
3 order reduction (DOF: 10^12 to 10^9) of the 
data size
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Incremental PCA (Conventional)
Compressed data

6D (5D+1D time) ViewSaved 5D data files

Issue: 
 

5D series data managed as a Dask array (view)

Common basis on all the 5D data. Coefficients for each time step

All the 5D data kept on storage (10TB~100TB)

Incremental PCA (Incremental in time direction) on 5D series data

Overview:

enormous storage cost 128 GB x n steps ~ 10TB
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Incremental PCA using checkpoint data

In-situ incremental PCA

In-situ incremental PCA

Checkpoint n

Checkpoint n+1

Storage cost reduced (single step): 128 GB

Issue: To compute coefficients, another identical simulation needed
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In-situ data analysis of Voice 1D+1V (w/o MPI) with PDI
Simulation PDI [1] Interface Python

int iter = 0; 
for (; iter < steps; ++iter) { 
  // Computations 

  // Evoke events by PDI 
  PdiEvent("iteration") 
    .with("iter", iter) 
    .and_with("time", time) 
    .and_with("f", f); 
}

data: 
  f_extents: { type: array,  
               subtype: int64,  
               size: 3 } 
  f: 
    type: array 
    subtype: double 
    size: [ '$f_extents[0]',  
            '$f_extents[1]',  
            ‘$f_extents[2]' ] 

plugins: 
  pycall: 
    on_event: [iteration] 
      - with: { time: $time,  
                f: $f } 
        exec:  
          import insitu                      
          insitu.plot_f(f, time)

def plot_f(f, time): 
    plot_(f, time, species=0)

Achieved
In-situ visualization of f
In-situ incremental PCA on f

On-going
In-situ incremental PCA on GYSELA data 
with DEISA [2]

[1] https://pdi.dev/1.5/ 
[2] A. Gueroudji et al., HiPC, December 2021.
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Performance portability for exascale simulation

Scalable data analysis based on Dask

Summary

Managing large scale data ( > 10 TB) with Dask

C++ parallel algorithm: Improved readability, performance and portability

Preparation for in-situ incremental PCA on GYSELA data

AMD GPU porting of CityLBM: preparation for exa simulations on Frontier

Future works
Performance evaluation for MPI + parallel algorithm (C++)
In-situ machine learning with PDI + Dask (collaboration with J. Bigot)

Surrogate models for CFD simulations
DL-based surrogate model is fast while keeping the good accuracy


