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1 Introduction.

Reservoir computing, a brain-inspired

machine-learning technique that employs a

data-driven dynamical system, is effective in

predicting time series and frequency spectra

in chaotic behaviors, including fluid flow and

global atmospheric dynamics [1, 2, 4, 5, 6].

The extent to which a data-driven model using

reservoir computing can capture the dynamical

properties of original systems should be deter-

mined. Lu et al. [1] reported that a data-driven

model has an attractor similar to that of the

original system under an appropriate choice of

parameters. Nakai and Saiki [3] confirmed that a

single data-driven model could infer the time se-

ries of chaotic fluid flow from various initial con-

ditions. Zhu et al. [7] identified some unstable

periodic orbits of a data-driven model through

delayed feedback control. They suggested that a

data-driven model could reconstruct the attrac-

tor of the original dynamical system.

This study clarifies that a data-driven model

using reservoir computing has richer information

than that obtained from a training data, espe-

cially from dynamical system point of view, sug-

gesting that dynamical properties of the original

unknown dynamical system can be estimated by

reservoir computing from a relatively short time

series. The dynamical properties, such as Lya-

punov exponents and manifold structures be-

tween stable and unstable manifolds, can be re-

constructed by the data-driven model through

reservoir computing.

2 Reservoir computation.

What’s Reservoir computation?

• a relatively high-dimentional fixed neural-

network composed of simple nonlinear dy-

namical systems

• determination of output layer

• For Lorenz system and Kuramoto–

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

⃝ 1st step (making a reservoir vector)

Making a reservoir vector r(t) correspond to de-

composition of the input data u by using non-

linear function tanh:

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winu(t)).

A,Win: sparse random matrix, whose maximal

eigenvalue is controlled.
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Figure 1: Schematic picture of a reservoir

computing (training phase)

⃝ 2nd step (determination of output layer)

We determine Wout s.t.

t∀ < T Woutr(t+∆t) ≈ s(t+∆t).

⇒ Determine them s.t. the form is minimized:

L∑
l=1

∥(Woutr(l∆t))− s(l∆t)∥2 + β[Tr(WoutW
T
out)].

2.2 Procedure of inference.

Using the W∗
out, we infer the time-series s.

ŝ(t) = W∗
outr(t)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winŝ(t)).
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Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-driven

model of u.

3 Our project.

In our project by employing a reservoir comput-

ing we evaluate a dynamical model constructed from

a biased training data. It is well known that an

infinitely many periodic orbits are embedded in a

chaotic attractor. We create training data by choos-

ing a set of periodic orbits. In our preliminary study

we have confirmed that a model trained from a set

of relatively low periods periodic orbits reconstructs

a trajectory which approximates the actual one for

a certain amout of time. For the Lorenz system

with classical parameter values, each periodic orbit

is coded by the symbol sequence L or R depending

on the sign of the x coordinate along a periodic or-

bit. A typical long trajectory has similar number

of Ls and Rs. Therefore, a periodic orbit with a

symbol sequence such as L10R1 (the number of Ls

is much bigger than that of Rs) can be used as a

biased training data. In this study we evaluate each

of the models trained from different biased training

data.
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Figure 3: Examples of three periodic trajectories

used as training data

-20

-10

 0

 10

 20

 0  2  4  6  8  10

reservoir

actual

Figure 4: Time development of x of a model

trajectory in compared to that of an actual

trajectory
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Figure 5: Projection of a long model trajectory and

that of a long actual trajectory
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