jh220006

Abstract Nuclear Quantum Effect（NQE），such as zero－point vibrational energy，tunneling，and its H／D isotope effect，is quite important in various systems from small molecules to material or biochemical complex species．Especially，in the case of＂Low Barrier Hydrogen Bonding（LBHB）systems＂，NQE of proton（or deuteron）is indispensable．To elucidate such hydrogen－functional mechanism，we will develop some ab initio approaches for multi－component systems including both electrons and nuclei quantum－mechanically：（I）Multi－component density functional theory（MC＿DFT）and（II）ab initio path integral molecular dynamics（PIMD）methods．

Nuclear quantum and H／D isotope effect
－Photoactive Yellow Protein（PYP）
Neutron crystallography demonstrated the formation of LBHB in PYP，which was assumed to play the important role in photosencing process．［4］

－Enhanced Green Fluorescent Prc （EGFP）

[^0]
CPLB method

Combined Plane wave and Localized Basis－sets method is using MC＿DFT at the cluster model around H／D．

$$
\begin{aligned}
E_{\mathrm{CPLB}, \text { surface }} & =\mathrm{E}_{\text {Plane wave, surface }} \\
& -E_{\text {Plane wave, cluster }} \\
& +E_{\text {MC_DFT, cluster }}
\end{aligned}
$$

－H／D atom adsorption on $\operatorname{Pd}(111)$ surface

$$
r_{\text {H-surface }}=0.800 \AA>r_{\text {D-surface }}=0.785 \AA
$$

$E_{\text {ads }}(\mathrm{H})=2.683 \mathrm{eV}<\quad E_{\text {ads }}(\mathrm{D})=2.698 \mathrm{eV}$

Adsorption distance $r_{\text {H－surface }}$ is longer than of $r_{\text {D－surface }}$ ． Although no direct observations of this geometrical difference surface have been reported，this result expects due to the anharmonicity of the potential．

Adsorption energy $E_{\text {ads }}(H)$ is lower than $E_{\text {ads }}(\mathrm{D})$ ，which result corresponds to the experimentally trend．［6］
－ $\mathrm{CH}_{4} / \mathrm{CD}_{4}$ molecular adsorption on $\mathrm{Rh}(111)$ surface
$r_{\mathrm{H}-\mathrm{C}}=1.119 \AA>\quad r_{\mathrm{D}-\mathrm{C}}=1.113 \AA$
$r_{\mathrm{H} \text {－surface }}=2.071 \AA<r_{\mathrm{D} \text {－surface }}=2.107 \AA$
$E_{\text {ads }}\left(\mathrm{CH}_{4}\right)=0.399 \mathrm{eV}>E_{\text {ads }}\left(\mathrm{CD}_{4}\right)=0.330 \mathrm{eV}$

Adsorption energy $E_{\text {ads }}\left(\mathrm{CH}_{4}\right)$ is higher than $E_{\text {ads }}\left(\mathrm{CD}_{4}\right)$ due to the anharmonicity of the potential，which is similar trend as observed $\mathrm{C}_{6} \mathrm{H}_{12} / \mathrm{C}_{6} \mathrm{D}_{12}$ adsorption．［7］

$$
\text { Adsorption distance } r_{\text {H-surface }} \quad \begin{gathered}
0.002-0.003 \mathrm{~A} \\
r_{\mathrm{ad}}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)>r_{\mathrm{ad}}\left(\mathrm{C}_{6} \mathrm{D}_{12}\right)
\end{gathered}
$$ is shorter than $r_{\text {D－surface．}}$ ．And bond length $r_{\text {H－C }}$ is longer than $r_{\text {D－C．}}$ which is also similar trend as $\mathrm{C}_{6} \mathrm{H}_{12} / \mathrm{C}_{6} \mathrm{D}_{12}$ adsorption．

These results suggest CD_{4} has a weaker interaction with the $\mathrm{Rh}(111)$ surface than CH_{4} ．

Our CPLB method is expected to be an effective tool for analysing H／D on metal surfaces．

[^0]: \checkmark Special geometry of D2O and Hydrogen－ bonding network in EGFP
 （C．Shibazaki et．al．，J．Phys．Chem．Lett．，
 11，492－496，2020）

