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1 Introduction.

Reservoir computing, a brain-inspired

machine-learning technique that employs a

data-driven dynamical system, is effective in

predicting time series and frequency spectra

in chaotic behaviors, including fluid flow and

global atmospheric dynamics [2, 3, 5, 6].

The extent to which a data-driven model using

reservoir computing can capture the dynamical

properties of original systems should be deter-

mined. Lu et al. [2] reported that a data-driven

model has an attractor similar to that of the

original system under an appropriate choice of

parameters. Nakai and Saiki [4] confirmed that a

single data-driven model could infer the time se-

ries of chaotic fluid flow from various initial con-

ditions. Zhu et al. [8] identified some unstable

periodic orbits of a data-driven model through

delayed feedback control. They suggested that a

data-driven model could reconstruct the attrac-

tor of the original dynamical system.

This study clarifies that a data-driven model

using reservoir computing has richer information

than that obtained from a training data, espe-

cially from dynamical system point of view, sug-

gesting that dynamical properties of the original

unknown dynamical system can be estimated by

reservoir computing from a relatively short time

series. The dynamical properties, such as Lya-

punov exponents and manifold structures be-

tween stable and unstable manifolds, can be re-

constructed by the data-driven model through

reservoir computing.

2 Reservoir computation.

What’s Reservoir computation?

• a relatively high-dimentional fixed neural-

network composed of simple nonlinear dy-

namical systems

• determination of output layer

• For Lorenz system and Kuramoto–

Sivashinsky system, inference [2, 5, 6]

2.1 Procedure of training.

⃝ 1st step (making a reservoir vector)

Making a reservoir vector r(t) correspond to de-

composition of the input data u by using non-

linear function tanh:

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winu(t)).

A,Win: sparse random matrix, whose maximal

eigenvalue is controlled.
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⃝ 2nd step (determination of output layer)

We determine Wout s.t.

t∀ < T Woutr(t+∆t) ≈ s(t+∆t).

⇒ Determine them s.t. the form is minimized:

L∑
l=1

∥(Woutr(l∆t))− s(l∆t)∥2 + β[Tr(WoutW
T
out)].

2.2 Procedure of inference.

Using the W∗
out, we infer the time-series s.

ŝ(t) = W∗
outr(t)

r(t+∆t) = (1− α)r(t) + α tanh(Ar(t) +Winŝ(t)).
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This reservoir system corresponds to the data-driven

model of u.

3 Lyapunov exponents and

Lyapunov vectors.

The Lyapunov exponents are used to evaluate the

degree of instability and estimate the Lyapunov di-

mension of a dynamical system. In some studies,

the Lyapunov exponents of a data-driven model by

reservoir computing were calculated in the space

of N -dimensional reservoir state vector [1, 5, 6, 7].

Pathak et al. [5] computed Lyapunov exponents for

the reservoir state vector and found that they al-

most coincide with those of the original system for

the case of a partial differential equation, whereas

only positive and neutral exponents coincide with

those for the Lorenz system. To the best of the au-

thors’ knowledge, they have not been computed in

a space of output variables.

In this study, an attempt is made to compute

Lyapunov exponents in the space of output vari-

ables corresponding to x, y and z for the Lorenz

system. Here we describe how to compute Lya-

punov exponents and vectors in the original vari-

ables numerically from a trajectory of the data-

driven model. We first estimate the Jacobian ma-

trix at each point (x, y, z) along the trajectory of

the data-driven model as follows:

(i) Apply the Taylor series expansion of order

six to estimate ẋ = dx/dt, ẏ = dy/dt and

ż = dz/dt at each sample point along the

discrete trajectory;

(ii) Apply linear regression to the estimated val-

ues of ẋ, ẏ and ż by xlymzn (0 ≤ l+m+n ≤
3, l,m, n ≥ 0) as explanatory variables;

(iii) Obtain the Jacobian matrix J(x) at each

point x by differentiating polynomials with

the regression coefficients estimated in (ii).

We compute Lyapunov exponents and vectors by

integrating the linear ordinary differential equation

having coefficients determined by the Jacobian ma-

trices (ẋ(t) = J(x(t))x(t)), while the orbit is given

by the trajectory of the data-driven model. Note

that in this computation the discrete time trajec-

tory points of a data-driven model are considered

samples of the continuous time trajectory. For the

high-accuracy computation with a rather large time

step ∆t of the reservoir computing, we employ four-

stage and fourth-order Runge-Kutta method with

time step 2∆t from the points along an orbit trajec-

tory.
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