

High resolution simulation of cardiac electrophysiology on realistic whole-heart geometries

Kengo Nakajima, The University of Tokyo, Japan Xing Cai, Simula Research Laboratory, Norway

13th JHPCN Symposium (Online) July 8-9, 2021

Members

Information Technology Center, The University of Tokyo

- Kengo Nakajima (HPC, Algorithms), Co-PI
- Akihiro Ida (Algorithms) (⇒JAMSTEC)
- Toshihiro Hanawa (HPC)
- Masatoshi Kawai (HPC, Algorithms)
- Tetsuya Hoshino (HPC)
- Masaharu Matsumoto (HPC) (⇒Fukushima University)

Simula Research Laboratory, Norway

- Xing Cai (Simulations, Modeling, HPC), Co-PI (Norway)
- Glenn Terje Lines (Modeling) (Norway)
- Johannes Langguth (HPC) (Germany)
- Jonas van den Brink (Simulations) (Netherlands)
- Kristian Gregorius Hustad (HPC) (Norway)
- Hermenegild Arevalo (Simulations) (USA)
- James Trotter (HPC) (Norway)
- Aadarsh Bussooa (HPC) (Mauritius)
- María Hernández Mesa (Simulations) (Spain)

simula

Computational Overview

• Mathematical model: a 3D nonlinear reaction-diffusion equation

$$rac{\lambda}{1+\lambda}
abla \cdot (oldsymbol{\Sigma}_i
abla v) = \chi \left(C_m rac{\partial v}{\partial t} + I_{ ext{ion}}
ight)$$

- Operator splitting results in a "PDE" part and an "ODE" part
 - PDE part: 3D diffusion equation for v (transmembrane potential) with an inhomogeneous and anisotropic conductivity tensor
 - ODE part: a system of nonlinear ODEs to model transmembrane ionic current I_{ion}
- Unstructured tetrahedral mesh used to represent the heart geometry
 - Mesh partitioning used for distributed-memory (MPI) parallelization
 - OpenMP threads used for shared-memory parallelization

FY.2021 Research Activity 1

Improve the current parallel diffusion equation solver (explicit time integration & cell-centered finite volume discretization)

- Appropriate combination of MPI processes and OpenMP threads
 - What's the ideal number of MPI processes per compute node?
 - Non-default scheduling of the OpenMP threads?
 - Should some of the OpenMP threads be exclusively reserved for communication tasks?
 - Better ordering of the degrees of freedom within each MPI process?
- Overlap between computation and MPI communication
 - Replacement of MPI_Neighbor_alltoallv with MPI_Ineighbor_alltoallv for halo exchange?
 - Other ways of optimizing the MPI communication?

FY.2021 Research Activity 2 Implement a new parallel diffusion equation solver

- Implicit time integration + cell-centered finite volume discretization
- Better numerical stability and possibly better accuracy
 - Can use larger step sizes
 - However, each time step will be more time consuming
- Need to efficiently solve a sparse linear system during each time step
 - Can reuse the same mesh partitioning strategy
 - Can reuse the same SpMV implementation and the associated halo-exchange
 - Need to incorporate a parallel MPI+OpenMP Conjugate Gradient iterative solver
 - Need an effective parallel MPI+OpenMP preconditioner

FY.2021 Research Activity 3 Parallel Algebraic Multigrid (AMG) Preconditioner

- Need to be high-performance and compatible with the MPI+OpenMP parallelization
 - Multiplicative Schwartz type block multi-color parallelization for Gauss-Seidel smoother^{†1} → Improving convergence rate, Reducing amount of communication

[Kawai et al. HPC Asia 2020]

 Need to find suitable AMG parameters for sparse matrices that arise from discretizing 3D diffusion equation on unstructured heart meshes

FY.2021 Research Activity 4

Realistic whole-heart simulations of cardiac electrophysiology

- $O(10^8)$ tetrahedra to represent realistic whole-heart geometries
- Effective use of *O*(100)-*O*(1000) powerful compute nodes for close-toreal-time parallel simulations
- Goal: To be able to carry out detailed, in-silico experiments of cardiac electrophysiology, in both healthy and diseased states

FY.2021 Research Activity 5 Port the simulator of cardiac electrophysiology to Wisteria/BDEC-01 (Odyssey)

- Performance benchmarking on the A64FX architecture
 - Single node
- Performance tuning/optimization on the A64FX architecture
 - Single node
 - Many nodes

