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Abstract 

Soft Matter systems are characterized by a hierarchy of 
length- and time-scales, in which the dynamics of the 
microscopic constituents are intricately coupled to the 
macroscopic dynamics. Examples include colloidal dis-
persions, cellular tissues, and polymeric materials, 
among others. Due to their significance for material sci-
ence, we focus here on polymer melt flows, although the 
methods we develop can be extended to other systems.  

The traditional approaches used to tackle such prob-
lems are : (1) a Multi-Scale Simulation (MSS) [1,2], in 
which the micro/macro coupling is added explicitly, or 
(2) a fully macroscopic description using a specific con-
stitutive relation. The former is incredibly expensive, 
while the latter often lacks a theoretical foundation. 

Our goal is to develop physics informed Machine Learn-
ing (ML) methods to learn the constitutive relation for 
the stress of polymeric flows with memory[3,4]. This 
will allow us to drastically reduce the calculation time 
compared to state-of-the-art Multi-Scale Simulations, 
while still maintaining their superior accuracy. We have 
used a Gaussian Process regression scheme, which al-
lows us to account for missing and/or noisy data, and 
naturally fits within a principled Bayesian framework.  

Model 

Macroscopic Flow 

We use a Smoothed Particle Hydrodynamics (SPH) de-
scription to model the flow[5]. The fluid is discretized 
into fluid particles carrying mass, momentum, energy, 
etc. The momentum equation for the -th particle is 

                

Microscopic Polymer Dynamics  
We use the dual-slip link model originally developed by Doi and 
Takimoto[6], which accounts for polymer entanglement. The 

entangled polymer chain is represented as a primitive path with 
sip-links. The primitive path corresponds to the limited motion 
area of the chain, whereas a slip-link is the entanglement point 
that couples with a slip-link on another chain. The model in-
cludes three different relaxation mechanisms of polymer melts  

• Contour Length Fluctuations 

• Reptation 

• Constraint Renewal (of slip-links) 

The polymer chain length  relaxes according to 

 

and the stress is derived from the entropy elasticity 

 

Gaussian Process (GP) Regression 

Let  and  denote two arbitrary functions. Without loss 
of generality, we can place a GP prior on the joint distri-
bution, such that[7] 

 

 

with  the average, and  the covariance matrices. If  is 
known, we use this information to update our condition-
al distribution for . This conditional distribution is yet 
another GP. Here,   and  correspond to the training 
and test stresses, respectively 

Research Plan 
Our research is divided into four themes / components: 

(A) MSS validation : Parallelize / Optimize our current MSS 
code to scale up to  fluid particles in 3D. This is nec-
essary to validate our ML approach. 

(B) Constitutive Equation Learning : Learn the Doi-Takimoto 
constitutive relation to simulation entangled polymer melts. 

(C) Polymer Processing Flows : Used the learned constitutive 
relations (B) to simulate processing flows used in industry.  
Results will be validated against full MSS (A). 

(D) Soft Matter Extensions : Extend our study to learn the con-
stitutive relation of colloidal dispersion / cellular tissues. 

The goal of this JHPCN project is to accelerate / optimize each 
of these components, where possible by moving most of the 
calculations to GPUs. 

Preliminary Results 

Doi-Takimoto model + Planar Poiseuille Flow 

MSS Parallelization & Optimization 

(smaller is better) 
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Fig. 1. Schematic representation of proposed learning. Giv-
en a microscopic model, we wish to infer the appropriate 
constitutive relation.

Fig. 2. Representation of the Doi-Takimoto dual slip-link 
model. 
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Fig. 3. Scheme used to learn the constitutive relations 
for the stress of polymer melt flows[4]. 

Fig. 4. MSS (solid) vs GP-MSS results (symbols).
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