Development of physics informed
machine learning for soft matter:
polymer flows and beyond
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Abstract

Microscopic Polymer Simulation

Macroscopic Flow Simulation

Fig. 1. Schematic representation of proposed learning. Giv-
en a microscopic model, we wish to infer the appropriate
constitutive relation.

Soft Matter systems are characterized by a hierarchy of
length- and time-scales, in which the dynamics of the
microscopic constituents are intricately coupled to the
macroscopic dynamics. Examples include colloidal dis-
persions, cellular tissues, and polymeric materials,
among others. Due to their significance for material sci-
ence, we focus here on polymer melt flows, although the
methods we develop can be extended to other systems.

The traditional approaches used to tackle such prob-
lems are : (1) a Multi-Scale Simulation (MSS) [1,2], in
which the micro/macro coupling is added explicitly, or
(2) a fully macroscopic description using a specific con-
stitutive relation. The former is incredibly expensive,
while the latter often lacks a theoretical foundation.

Our goal is to develop physics informed Machine Learn-
ing (ML) methods to learn the constitutive relation for
the stress of polymeric flows with memory[3,4]. This
will allow us to drastically reduce the calculation time
compared to state-of-the-art Multi-Scale Simulations,
while still maintaining their superior accuracy. We have
used a Gaussian Process regression scheme, which al-
lows us to account for missing and/or noisy data, and
naturally fits within a principled Bayesian framework.

Model

Macroscopic Flow

We use a Smoothed Particle Hydrodynamics (SPH) de-
scription to model the flow[5]. The fluid is discretized
into fluid particles carrying mass, momentum, energy,
etc. The momentum equation for the i-th particle is

p: density
A v: velocity
pige =Vl PAHE g s tensor
V-u=0 F': body-force
P: pressure

Microscopic Polymer Dynamics

We use the dual-slip link model originally developed by Doi and
Takimoto[6], which accounts for polymer entanglement. The
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Fig. 2. Representation of the Doi-Takimoto dual slip-link
model.

entangled polymer chain is represented as a primitive path with
sip-links. The primitive path corresponds to the limited motion
area of the chain, whereas a slip-link is the entanglement point
that couples with a slip-link on another chain. The model in-
cludes three different relaxation mechanisms of polymer melts

. Contour Length Fluctuations
. Reptation

. Constraint Renewal (of slip-links)

The polymer chain length L relaxes according to
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and the stress is derived from the entropy elasticity
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Gaussian Process (GP) Regression
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Fig. 3. Scheme used to learn the constitutive relations
for the stress of polymer melt flows[4].

Let f; and f, denote two arbitrary functions. Without loss
of generality, we can place a GP prior on the joint distri-
bution, such that[7]
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with p the average, and K the covariance matrices. If f, is
known, we use this information to update our condition-
al distribution for fj. This conditional distribution is yet
another GP. Here, f| and f, correspond to the training
and test stresses, respectively

Research Plan

Our research is divided into four themes / components:

(A) MSS validation : Parallelize / Optimize our current MSS
code to scale up to =~ 109 fluid particles in 3D. This is nec-
essary to validate our ML approach.

(B) Constitutive Equation Learning : Learn the Doi-Takimoto
constitutive relation to simulation entangled polymer melts.

(C) Polymer Processing Flows : Used the learned constitutive
relations (B) to simulate processing flows used in industry.
Results will be validated against full MSS (A).

(D) Soft Matter Extensions : Extend our study to learn the con-
stitutive relation of colloidal dispersion / cellular tissues.

The goal of this JHPCN project is to accelerate / optimize each
of these components, where possible by moving most of the
calculations to GPUs.

Preliminary Results

Doi-Takimoto model + Planar Poiseuille Flow
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Fig. 4. MSS (solid) vs GP-MSS results (symbols).
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