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Plasma turbulence simulation
Each grid point has structure 
in real space (x, y, z) and 
velocity space (v||, v⊥)

5D stencil computations

[Idomura et al., Comput. Phys. Commun (2008);
Nuclear Fusion (2009)]

Accelerators are key ingredients to satisfy huge computational 
demands at reasonable energy consumption: MPI + ‘X'

First principle gyrokinetic model to predict plasma turbulence 

Concerning the dynamics of kinetic electrons, complicated geometry, 
even more computational resource is needed

Confinement properties of fusion reactors (high temperature, non-Maxwellian) 

Solving the machine scale problem (~m) with turbulence scale mesh (~cm)
Degrees of freedom: Large scale data analysis (1D to 5D)
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Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and 
computation using std::thread or 
OpenMP task)

Scalable data analysis
Investigating performance of 
directive based approach and 
abstraction based approach [1]

In-situ machine learning to avoid 
saving the huge data

[1] Y. Asahi et al., WACCPD 6, SC19 
[2] Y. Asahi et al., to be submitted

Large scale data analysis based 
on Dask
Analyzing the time series of 5D 
distribution function [2]

★

★ C o m p l e t e d i n J H 1 9 0 0 6 5 
“Modernizing and accelerating 
fusion plasma turbulence codes 
targeting exa-scale systems”
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Masking transpose communication costs 
(jh180081-NAHI) 

Sequential 
PackKernel

MPI Forward

Conv2D Unpack

Backward

2.
3.

Forward Transpose for

4.
5.

Multiplication

6.

2D IFFT in x, y for

Backward Transpose for

2D FFT in x, y for
Conv2D

Forward

Backward

Pack

Unpack

1. Packing to send buffer

7. Unpacking from receive buffer

GKV and GYSELA employ transpose communications and 2D Operations
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Sequential 

Batched
P0Kernel

MPI F0

C0 U0 P1

B0 B1F1

C1 U1

F2 F3B2 B3

U2P2 C2 C3 U3P3

PackKernel

MPI Forward

Conv2D Unpack

Backward

Masking transpose communication costs 
(jh180081-NAHI) 
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Sequential 

Batched

P0Kernel

MPI

P1

F1

P3

F3F0

C2

B0 B3

P2

F2

C0

B1

C1 C3U0 U1 U3U2

B2

Overlapped (communication costs are partially masked)

P0Kernel

MPI F0

C0 U0 P1

B0 B1F1

C1 U1

F2 F3B2 B3

U2P2 C2 C3 U3P3

PackKernel

MPI Forward

Conv2D Unpack

Backward

Masking transpose communication costs 
(jh180081-NAHI) 



Applying kernel optimization techniques [1] to GYSELA and GKV [2]

GYSELA (Xeon Phi KNL)

Applying communication and computation overlapping  [3]

8/16

GKV (GPU)

x2~3
x1.15

[1] Y. Asahi et al., IEEE-TPDS, 28, 7, 1974–1988 (2017) 
[2] T.-H. Watanabe et al., Nucl. Fusion 46, 24-32, (2006) 
[3] Y. Asahi et al., CCPE (2020)

2x Speed up compared to the conventional CPUs (Broadwell~0.5TFlops, 
FX100~1TFlops)

Achievements

Strong scaling with overlapping (jh180081-NAHI) 



Performance portable implementation with Kokkos (jh190065)
4D Vlasov-Poisson equation （2D space、2D velocity space）

Vlasov solver: Semi-Lagrangian, Strang splitting
Poisson solver: 2D Fourier transform

 53   // Forward 2D FFT (Real to Complex) 
 54   fft_->fft2(rho_.data(), rho_hat_.data()); 
 56   // Solve Poisson equation in Fourier space 
 57   complex_view_2d ex_hat  = ex_hat_; 
 58   complex_view_2d ey_hat  = ey_hat_; 
 59   complex_view_2d rho_hat = rho_hat_; 
 63   view_1d filter = filter_; 
 65   Kokkos::parallel_for(nx1h, KOKKOS_LAMBDA (const int ix1) { 
 66     double kx = ix1 * kx0; 
 67     { 
 68       int ix2 = 0; 
 69       double kx = ix1 * kx0; 
 70       ex_hat(ix1, ix2) = -kx * I * rho_hat(ix1, ix2) * filter(ix1) * normcoeff; 
 71       ey_hat(ix1, ix2) = 0.; 
 72       rho_hat(ix1, ix2) = rho_hat(ix1, ix2) * filter(ix1) * normcoeff; 
 73     } 
 74  
 75     for(int ix2=1; ix2<nx2h; ix2++) { 
 76       double ky = ix2 * ky0; 
 77       double k2 = kx * kx + ky * ky; 
 78  
 79       ex_hat(ix1, ix2) = -(kx/k2) * I * rho_hat(ix1, ix2) * normcoeff; 
 80       ey_hat(ix1, ix2) = -(ky/k2) * I * rho_hat(ix1, ix2) * normcoeff; 
 81       rho_hat(ix1, ix2) = rho_hat(ix1, ix2) / k2 * normcoeff; 
 82     } 
 83  
 84     for(int ix2=nx2h; ix2<nx2; ix2++) { 
 85       double ky = (ix2-nx2) * ky0; 
 86       double k2 = kx*kx + ky*ky; 
 87  
 88       ex_hat(ix1, ix2) = -(kx/k2) * I * rho_hat(ix1, ix2) * normcoeff; 
 89       ey_hat(ix1, ix2) = -(ky/k2) * I * rho_hat(ix1, ix2) * normcoeff; 
 90       rho_hat(ix1, ix2) = rho_hat(ix1, ix2) / k2 * normcoeff; 
 91     } 
 92   }); 
 94   // Backward 2D FFT (Complex to Real) 
 95   fft_->ifft2(rho_hat.data(), rho_.data()); 
 96   fft_->ifft2(ex_hat.data(),  ex_.data()); 
 97   fft_->ifft2(ey_hat.data(),  ey_.data());

Kokkos implementation of Poisson solver 
(a single codebase working on CPU/GPU)

Performance against SKL (OpenMP)

Good performance portability keeping 
readability and productivity with Kokkos
(Abstraction of memory and parallel operation)

[1] Y. Asahi et al., OpenACC meeting, September, Japan 
[2] Y. Asahi et al., waccpd (SC19), November, US9/16

Time [s] Speedup
Skylake (OpenMP) 278 1.0
Skylake (Kokkos) 192 1.45
Arm (OpenMP) 589 0.47
Arm (Kokkos) 335 0.83
P100 (OpenACC) 21.5 12.95
P100 (Kokkos) 15.6 17.83
V100 (OpenACC) 10.0 27.8
V100 (Kokkos) 6.79 40.9

Achievements
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Demands for MPI + ‘X’ in our group

More than 100 M cpu hours/year

GPU machine
SUMMIT [2]

[1] https://www.r-ccs.riken.jp/en/ 
[2] https://www.olcf.ornl.gov/summit/

Portability Readability
ARM machine 

Fugaku [1]

We need a readable, portable, and high performance code 
that is easy to upgrade!

Circular Limiter

Advanced (realistic) physical model

Productivity High Performance
Readable for physicistsExa machine may be very divergent

Strong scaling 
of GYSELA
up to 512 KNLs
(MPI+OpenMP)

#pragma omp parallel for 
for(int i=0; i<n; i++)  
  a[i] = b[i] + scalar * c[i];

#pragma acc parallel loop 
for(int i=0; i<n; i++) 
  a[i] = b[i] + scalar * c[i];

OpenMP

OpenACC
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Aim: explore performance portable 
implementation with the mini-app

Productivity: Easy to modify and maintenance

Readability: Easy to read for developers from many different fields

Portability: A single code runs on many different devices

High performance: Good performance on a given device

Directive based approach: OpenMP, OpenACC, OpenMP4.5
Higher level abstraction: Kokkos, RAJA, Alpaka

Explore performance portable implementation over different devices: 
Nvidia GPUs, Intel CPU, ARM CPU

Requirements

Possible approaches

Methodology
Directive-based and abstraction-based implementation of mini-app
Mixed OpenMP/OpenACC and Kokkos (minimize code duplication)

Target mini-apps: GKV mini-app (transpose and FFT) and GYSELA 
mini-app (semi-Lagrangian)



Encapsulate key GYSELA features into mini-app
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Extract the Semi-Lagrangian + operator splitting strategy for Vlasov solver
Choose Kokkos for MPI version based on the experience with Mini-app [1]

GYSELA (3D torus) Mini-app (periodic)

GYSELA Mini-app Mini-app MPI
System 5D Vlasov + 3D Poisson 4D Vlasov + 2D Poisson 4D Vlasov + 2D Poisson

Geometry Realistic tokamak geoemtry Periodic boundary conditions Periodic boundary conditions

Scheme Semi-Lagrangian (Spline) + 
Operator splitting
(2D + 1D + 1D)

Semi-Lagrangian (Lagrange) + 
Operator splitting

(1D + 1D + 1D + 1D)

Semi-Lagrangian (Spline) + 
Operator splitting

MPI Yes No Yes

X OpenMP OpenACC/OpenMP/Kokkos Kokkos

Language Fortran 90 C++ C++

Lines of 
codes

More than 50k About 5k About 8k

[1] https://github.com/yasahi-hpc/vlp4d

★

★JH190065

https://github.com/yasahi-hpc/vlp4d
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Global algo. of GYSELA mini app (One time step)
 18   // Exchange halo of the local domain in order to perform 
 19   // the advection afterwards (the interpolation needs the 
 20   // extra points located in the halo region) 
 21   comm.exchangeHalo(conf, fn, timers); 
 22  
 24   Spline::computeCoeff_xy(conf, fn); 
 25   Impl::deep_copy(fnp1, fn); 
 28  
 30   Advection::advect_2D_xy(conf, fn, 0.5 * dom->dt_); 
 33  
 35   field_rho(conf, comm, fn, ef); 
 36   field_poisson(conf, ef, dg, iter); 
 39  
 41   Spline::computeCoeff_vxvy(conf, fnp1); 
 44  
 46   Advection::advect_4D(conf, ef, fnp1, fn, dom->dt_); 
 49  
 51   field_rho(conf, comm, fnp1, ef); 
 52   field_poisson(conf, ef, dg, iter);

MPI Comm
Boundary condition
spline coef (xy)
copy fn to fnp1
2D advection (xy)
fn updated
compute phi using fn

spline coef (xy vxvy)
4D advection (xy vxvy)
fnp1 updated

compute phi using fnp1

GYSELA mini-app is parallelized with MPI (P2P and all reduce comms)

Local spline is used for interpolation

All reduce communication in poisson solver can be masked by overlapping
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GPU (transpose in (ky, z) )

1.
2.

Forward Transpose for

Data structure after operation

3.
4.
5.

2D IFFT in x, y for

Backward Transpose for
2D FFT in x, y for

[Y. Asahi et al., CCPE (2020)]

2D convolution by FFT (GKV hotspot)

Multiplication

0.

Hot spot of GKV code consists of transpose communication and 2D FFT
(convolution)
GKV mini app (2D derivative with FFT): Transpose + 2D FFT
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GKV mini-app in Kokkos
GKV mini-app: 2D derivative with FFT and transpose（pipelined）

 99       for(int ib = 0; ib < Nbatch; ++ib) { 
100         // Forward transpose (Nx, Ny/py, Nz/batch) => (Nx, Ny, Nz/batch/py) 
101         trans.forward(in, xy, ib); 
102  
103         // Forward transform (Nx, Ny, Nz/batch/py) => (Nx/2+1, Ny, Nz/batch/py) 
104         fft.fft2(xy.data(), kxky.data()); 
105  
106         // Derivative in Fourier space 
107         float64 normcoeff = 1./float64(Nx*Ny); 
108         Kokkos::parallel_for("derivative", derivative_policy2d,  
                                 KOKKOS_LAMBDA (const int jx, const int jy) { 
109           complex128 ikx_tmp = ikx(jx, jy); 
110           complex128 iky_tmp = iky(jx, jy); 
111           for(int jz=0; jz<Nz_local; jz++) { 
112             kxky(jx, jy, jz) = (ikx_tmp * kxky(jx, jy, jz) + iky_tmp * kxky(jx, jy, jz))  
                                 * normcoeff; 
113           } 
114         }); 
115  
116         // Backward transform (Nx/2+1, Ny, Nz/batch/py) => (Nx, Ny, Nz/batch/py) 
117         fft.ifft2(kxky.data(), xy.data()); 
118  
119         // Backward transpose (Nx, Ny, Nz/batch/py) => (Nx, Ny/py, Nz/batch) 
120         trans.backward(xy, out, ib); 
121       }

Compute derivative in Fourier space
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std::thread with Kokkos for Overlap
            for(int ib = 0; ib < Nbatch + 4; ++ib) { 
101           // Shallow copy 
102           RealView4D send_forward0  = (ib % 2 == 0) ? trans.send_forward0_  : trans.send_forward1_; 
103           RealView4D recv_forward0  = (ib % 2 == 0) ? trans.recv_forward0_  : trans.recv_forward1_; 
              … 
110  
111           threads.emplace_back( 
112             [&]() { 
113               // Packing 
114               if(ib < Nbatch) { 
115                 trans.forwardPack(in, send_forward0, ib); 
116               } 
118               // Unpacking, 2D operation, Packing 
119               if(ib >= 2 && ib < Nbatch + 2) { 
120                 trans.forwardUnpack(recv_forward1, xy); 
122                 fft.fft2(xy.data(), kxky.data()); 
123                 float64 normcoeff = 1./float64(Nx*Ny); 
124                 Kokkos::parallel_for("derivative", derivative_policy2d, KOKKOS_LAMBDA (const int jx, const int jy) { 
125                   complex128 ikx_tmp = ikx(jx, jy); 
126                   complex128 iky_tmp = iky(jx, jy); 
127                   for(int jz=0; jz<Nz_local; jz++) { 
128                     kxky(jx, jy, jz) = (ikx_tmp * kxky(jx, jy, jz) + iky_tmp * kxky(jx, jy, jz)) * normcoeff; 
129                   } 
130                 }); 
131                 fft.ifft2(kxky.data(), xy.data()); 
132  
133                 trans.backwardPack(xy, send_backward0); 
134               } 
136               // Unpacking (backward transpose) 
137               if(ib >= 4 && ib < Nbatch + 4) { 
138                 trans.backwardUnpack(recv_backward1, out, ib); 
139               } 
140             } 
141           ); 
143           // Communications 
144           if(ib >= 1 && ib < Nbatch + 1) { 
145             trans.comm(send_forward1, recv_forward0); 
146           } 
147           if(ib >= 3 && ib < Nbatch + 3) { 
148             trans.comm(send_backward1, recv_backward0); 
149           } 
151           for(auto &th: threads) th.join(); 
152           std::vector<std::thread>().swap(threads); // cleanup 
153         }

Kokkos kernel launched by 
std::thread

[1] Y. Asahi, CCPE (2020)

Communication/Computation 
overlap by pipelining [1]



�18

Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and 
computation using std::thread or 
OpenMP task)

Scalable data analysis
Investigating performance of 
directive based approach and 
abstraction based approach [1]

In-situ machine learning to avoid 
saving the huge data

Large scale data analysis based 
on Dask
Analyzing the time series of 5D 
distribution function [2]

[1] Y. Asahi et al., WACCPD 6, SC19 
[2] Y. Asahi et al., to be submitted

★ C o m p l e t e d i n J H 1 9 0 0 6 5 
“Modernizing and accelerating 
fusion plasma turbulence codes 
targeting exa-scale systems”

★
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Analyzing 5D gyrokinetic simulation data
1D time series 3D time series 5D time series

~kB

Structures of 
radial profile

Structures of Fluid 
moments 

~10MB ~10GB

Phase structure

Conventional study This work

Conventional Study: 3D structures (like convective cells), 1D structures 
(stair case, stiffness in temperature gradient)

This work: Extracting phase space structure from the time series of 5D 
distribution function (pattern formation in phase space)

High dimensional + huge data
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PCA and Fourier Transform
Fourier decomposition on signals

c0Coefs

Bases

0 1 2 3ReconstructionInput

PCA (principal component analysis) on hand-written numbers
ReconstructionInput

Bases

Coefs

0 1 2 3

c00 c01 c02

c03 c04 c05

c06 c07 c08

Input Bases Coefficients Reconstruction

FFT on signals

PCA on numbers

c10 c11 c12

c13 c14 c15

c16 c17 c00

c20 c21 c22

c23 c24 c25

c26 c27 c28

c30 c31 c32

c33 c34 c35

c36 c37 c38

c1 c2 c3

Dimensionality reduction keeping important features in the data

Comps

Comps



Principal component analysis of distribution function
Analyzing 6D (3D space x 2D velocity x time) Terabyte data using Dask+Xarray

Samples Features Eigen distribution function (basis)

PCA

Easily manage out-of-memory data (> 1TB) without MPI parallelization
Random sampling 3D phase space data             from 

component = 0: Maxwellian, representing radial structure in temperature
component=1: Poloidal variation of distribution function

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

n = 18

n = 0 n = 0 n = 0 n = 12

n = 12 n = 0 n = 6 n = 6

n = 6 n = 12 n = 12 n = 0
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m

n

Huge data 
(larger than memory)

Chunking into on memory tasks
which are managed by scheduler

 22     cluster = SLURMCluster(processes=1, 
 23                            cores=nb_cores, 
 24                            memory="150GB", 
 25                            project='GT5DSTC', 
 26                            name='worker', 
 27                            queue='S-M', 
 28                            walltime='00:30:00', 
 29                            interface='ipogif0') 
 30  
 31     # Typical size in incremental PCA 
 32     X = da.random.random((10000, 100000), chunks=(1000, 100000)).persist() 
 33     cluster.scale(nb_workers) 
 34     client = Client(cluster) 
 35  
 36     start = time.time() 
 37     u, s, v = da.linalg.svd_compressed(X, k=4) 
 38      
 39     future = u.compute() 
 40     end = time.time()

Task level parallelization with Dask.distributed
Task graph

It took 28.68612051010132  [s] with nb_workers 1, nb_cores 1 
It took 20.172788381576538 [s] with nb_workers 2, nb_cores 1 
It took 17.562381744384766 [s] with nb_workers 4, nb_cores 1 
It took 12.512330770492554 [s] with nb_workers 8, nb_cores 1
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Large scale PCA over 16 TB data
Electrons

Samples Features

Electron distribution function can be expressed with few components,
while ion distribution function needs much more components
16 TB reduced into 7GB with 83 % of cumulative 
explained variance

Ions

Reference ReconstructedReference Reconstructed
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Decomposing turbulence into sub-physics

0: Magnetic geometry 1: Ballooning (n=12) 2: Ballooning (n=12) 3: Convective cells
4: Ballooning (n=12) 5: Ballooning (n=12) 6: ballooning (n=6) 7: ballooning (n=6)
8: Ballooning (n=6) 9: Ballooning (n=12) 10: ballooning (n=12) 11: Turbulent
12: Ballooning (n=18) 13: Ballooning (n=18) 14: Ballooning (n=18) 15: Ballooning (n=18)

Turbulence decomposed into geometry (0), ballooning, 
convective cells (3)

Phase space basis (w = 0.125) Coefficients (r, theta)
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

[Note] simulation done with 1/6 wedge torus
n = 18

n = 0 n = 12 n = 12 n = 0

n = 12 n = 12 n = 6 n = 6

n = 6 n = 12 n = 12

n = 18 n = 18 n = 18
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Energy flux recovered from reduced data
Reference Energy flux by PCs

3 order reduction of the data size, still keeping the important 
properties like avalanche like transport [1]

Approximated energy flux

[1] Y. Asahi, to be submitted to PoP
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MPI version of GYSELA/GKV mini apps with Kokkos

Scalable data analysis based on Dask

Goal: Submit a paper to a SC workshop (P3H3PC or WACCPD2020)

Goal: Submit a paper to computer science and/or physics journal

Target Conferences/Workshops
SC20, 15 November, Atlanta, US

Current plans/targets

Integrate Dask into GYSELA diags through PDI (developed by J. Bigot)

P3H3PC: Performance Portability, and Productivity
WACCPD2020: Directive based implementation needed

Good to show scalable approach over multiple platforms (including Fugaku)
Using std::thread + Kokkos and OpenMP4.5 offloading + task

In situ machine learning (starting with PCA?)


