
Preparing for Exa-systems: Performance portable
implementation and scalable data analysis

Date: 9/July/2020

 1

jh200053-MDHI

Representative:
Deputy Representative:
Deputy Representative:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:
Collaborating researcher:

Y. Asahi (JAEA)
S. Maeyama (Nagoya Univ.)
J. Bigot (MdS, France)
X. Garbet (CEA, France)
G. Latu (CEA, France)
K. Fuji (Kyoto Univ.)
O. Kevin (CEA, France)
T.-H. Watanabe (Nagoya Univ.)
Y. Idomura (JAEA)
T. Aoki (Tokyo Tech.)
T. Katagiri (Nagoya Univ.)

Code development
Plasma turbulence
Scalable data analysis
Global plasma turbulence
Performance portability
Machine learning
Global plasma turbulence
Local plasma turbulence
Large scale simulation
Optimization on GPU
Optimization on CPU

Global code: GYSELA Local code: GKV

JHPCN 12th symposium, Shinagawa, Japan

Supercomputer resources:
FX1000 @ Nagoya Univ, Tsubame3.0 @Tokyo Tech

�2

Plasma turbulence simulation
Each grid point has structure
in real space (x, y, z) and
velocity space (v||, v⊥)

5D stencil computations

[Idomura et al., Comput. Phys. Commun (2008);
Nuclear Fusion (2009)]

Accelerators are key ingredients to satisfy huge computational
demands at reasonable energy consumption: MPI + ‘X'

First principle gyrokinetic model to predict plasma turbulence

Concerning the dynamics of kinetic electrons, complicated geometry,
even more computational resource is needed

Confinement properties of fusion reactors (high temperature, non-Maxwellian)

Solving the machine scale problem (~m) with turbulence scale mesh (~cm)
Degrees of freedom: Large scale data analysis (1D to 5D)

�3

Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and
computation using std::thread or
OpenMP task)

Scalable data analysis
Investigating performance of
directive based approach and
abstraction based approach [1]

In-situ machine learning to avoid
saving the huge data

[1] Y. Asahi et al., WACCPD 6, SC19
[2] Y. Asahi et al., to be submitted

Large scale data analysis based
on Dask
Analyzing the time series of 5D
distribution function [2]

★

★ C o m p l e t e d i n J H 1 9 0 0 6 5
“Modernizing and accelerating
fusion plasma turbulence codes
targeting exa-scale systems”

�4

Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and
computation using std::thread or
OpenMP task)

Scalable data analysis
Investigating performance of
directive based approach and
abstraction based approach [1]

In-situ machine learning to avoid
saving the huge data

Large scale data analysis based
on Dask
Analyzing the time series of 5D
distribution function [2]

★

[1] Y. Asahi et al., WACCPD 6, SC19
[2] Y. Asahi et al., to be submitted

★ C o m p l e t e d i n J H 1 9 0 0 6 5
“Modernizing and accelerating
fusion plasma turbulence codes
targeting exa-scale systems”

�5

Masking transpose communication costs
(jh180081-NAHI)

Sequential
PackKernel

MPI Forward

Conv2D Unpack

Backward

2.
3.

Forward Transpose for

4.
5.

Multiplication

6.

2D IFFT in x, y for

Backward Transpose for

2D FFT in x, y for
Conv2D

Forward

Backward

Pack

Unpack

1. Packing to send buffer

7. Unpacking from receive buffer

GKV and GYSELA employ transpose communications and 2D Operations

�6

Sequential

Batched
P0Kernel

MPI F0

C0 U0 P1

B0 B1F1

C1 U1

F2 F3B2 B3

U2P2 C2 C3 U3P3

PackKernel

MPI Forward

Conv2D Unpack

Backward

Masking transpose communication costs
(jh180081-NAHI)

�7

Sequential

Batched

P0Kernel

MPI

P1

F1

P3

F3F0

C2

B0 B3

P2

F2

C0

B1

C1 C3U0 U1 U3U2

B2

Overlapped (communication costs are partially masked)

P0Kernel

MPI F0

C0 U0 P1

B0 B1F1

C1 U1

F2 F3B2 B3

U2P2 C2 C3 U3P3

PackKernel

MPI Forward

Conv2D Unpack

Backward

Masking transpose communication costs
(jh180081-NAHI)

Applying kernel optimization techniques [1] to GYSELA and GKV [2]

GYSELA (Xeon Phi KNL)

Applying communication and computation overlapping [3]

8/16

GKV (GPU)

x2~3
x1.15

[1] Y. Asahi et al., IEEE-TPDS, 28, 7, 1974–1988 (2017)
[2] T.-H. Watanabe et al., Nucl. Fusion 46, 24-32, (2006)
[3] Y. Asahi et al., CCPE (2020)

2x Speed up compared to the conventional CPUs (Broadwell~0.5TFlops,
FX100~1TFlops)

Achievements

Strong scaling with overlapping (jh180081-NAHI)

Performance portable implementation with Kokkos (jh190065)
4D Vlasov-Poisson equation （2D space、2D velocity space）

Vlasov solver: Semi-Lagrangian, Strang splitting
Poisson solver: 2D Fourier transform

 53 // Forward 2D FFT (Real to Complex)
 54 fft_->fft2(rho_.data(), rho_hat_.data());
 56 // Solve Poisson equation in Fourier space
 57 complex_view_2d ex_hat = ex_hat_;
 58 complex_view_2d ey_hat = ey_hat_;
 59 complex_view_2d rho_hat = rho_hat_;
 63 view_1d filter = filter_;
 65 Kokkos::parallel_for(nx1h, KOKKOS_LAMBDA (const int ix1) {
 66 double kx = ix1 * kx0;
 67 {
 68 int ix2 = 0;
 69 double kx = ix1 * kx0;
 70 ex_hat(ix1, ix2) = -kx * I * rho_hat(ix1, ix2) * filter(ix1) * normcoeff;
 71 ey_hat(ix1, ix2) = 0.;
 72 rho_hat(ix1, ix2) = rho_hat(ix1, ix2) * filter(ix1) * normcoeff;
 73 }
 74
 75 for(int ix2=1; ix2<nx2h; ix2++) {
 76 double ky = ix2 * ky0;
 77 double k2 = kx * kx + ky * ky;
 78
 79 ex_hat(ix1, ix2) = -(kx/k2) * I * rho_hat(ix1, ix2) * normcoeff;
 80 ey_hat(ix1, ix2) = -(ky/k2) * I * rho_hat(ix1, ix2) * normcoeff;
 81 rho_hat(ix1, ix2) = rho_hat(ix1, ix2) / k2 * normcoeff;
 82 }
 83
 84 for(int ix2=nx2h; ix2<nx2; ix2++) {
 85 double ky = (ix2-nx2) * ky0;
 86 double k2 = kx*kx + ky*ky;
 87
 88 ex_hat(ix1, ix2) = -(kx/k2) * I * rho_hat(ix1, ix2) * normcoeff;
 89 ey_hat(ix1, ix2) = -(ky/k2) * I * rho_hat(ix1, ix2) * normcoeff;
 90 rho_hat(ix1, ix2) = rho_hat(ix1, ix2) / k2 * normcoeff;
 91 }
 92 });
 94 // Backward 2D FFT (Complex to Real)
 95 fft_->ifft2(rho_hat.data(), rho_.data());
 96 fft_->ifft2(ex_hat.data(), ex_.data());
 97 fft_->ifft2(ey_hat.data(), ey_.data());

Kokkos implementation of Poisson solver
(a single codebase working on CPU/GPU)

Performance against SKL (OpenMP)

Good performance portability keeping
readability and productivity with Kokkos
(Abstraction of memory and parallel operation)

[1] Y. Asahi et al., OpenACC meeting, September, Japan
[2] Y. Asahi et al., waccpd (SC19), November, US9/16

Time [s] Speedup
Skylake (OpenMP) 278 1.0
Skylake (Kokkos) 192 1.45
Arm (OpenMP) 589 0.47
Arm (Kokkos) 335 0.83
P100 (OpenACC) 21.5 12.95
P100 (Kokkos) 15.6 17.83
V100 (OpenACC) 10.0 27.8
V100 (Kokkos) 6.79 40.9

Achievements

�10

Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and
computation using std::thread or
OpenMP task)

Scalable data analysis
Investigating performance of
directive based approach and
abstraction based approach [1]

In-situ machine learning to avoid
saving the huge data

[1] Y. Asahi et al., WACCPD 6, SC19
[2] Y. Asahi et al., to be submitted

Large scale data analysis based
on Dask
Analyzing the time series of 5D
distribution function [2]

★

★ C o m p l e t e d i n J H 1 9 0 0 6 5
“Modernizing and accelerating
fusion plasma turbulence codes
targeting exa-scale systems”

�11

Demands for MPI + ‘X’ in our group

More than 100 M cpu hours/year

GPU machine
SUMMIT [2]

[1] https://www.r-ccs.riken.jp/en/
[2] https://www.olcf.ornl.gov/summit/

Portability Readability
ARM machine

Fugaku [1]

We need a readable, portable, and high performance code
that is easy to upgrade!

Circular Limiter

Advanced (realistic) physical model

Productivity High Performance
Readable for physicistsExa machine may be very divergent

Strong scaling
of GYSELA
up to 512 KNLs
(MPI+OpenMP)

#pragma omp parallel for
for(int i=0; i<n; i++)
 a[i] = b[i] + scalar * c[i];

#pragma acc parallel loop
for(int i=0; i<n; i++)
 a[i] = b[i] + scalar * c[i];

OpenMP

OpenACC

�12

Aim: explore performance portable
implementation with the mini-app

Productivity: Easy to modify and maintenance

Readability: Easy to read for developers from many different fields

Portability: A single code runs on many different devices

High performance: Good performance on a given device

Directive based approach: OpenMP, OpenACC, OpenMP4.5
Higher level abstraction: Kokkos, RAJA, Alpaka

Explore performance portable implementation over different devices:
Nvidia GPUs, Intel CPU, ARM CPU

Requirements

Possible approaches

Methodology
Directive-based and abstraction-based implementation of mini-app
Mixed OpenMP/OpenACC and Kokkos (minimize code duplication)

Target mini-apps: GKV mini-app (transpose and FFT) and GYSELA
mini-app (semi-Lagrangian)

Encapsulate key GYSELA features into mini-app

�13

Extract the Semi-Lagrangian + operator splitting strategy for Vlasov solver
Choose Kokkos for MPI version based on the experience with Mini-app [1]

GYSELA (3D torus) Mini-app (periodic)

GYSELA Mini-app Mini-app MPI
System 5D Vlasov + 3D Poisson 4D Vlasov + 2D Poisson 4D Vlasov + 2D Poisson

Geometry Realistic tokamak geoemtry Periodic boundary conditions Periodic boundary conditions

Scheme Semi-Lagrangian (Spline) +
Operator splitting
(2D + 1D + 1D)

Semi-Lagrangian (Lagrange) +
Operator splitting

(1D + 1D + 1D + 1D)

Semi-Lagrangian (Spline) +
Operator splitting

MPI Yes No Yes

X OpenMP OpenACC/OpenMP/Kokkos Kokkos

Language Fortran 90 C++ C++

Lines of
codes

More than 50k About 5k About 8k

[1] https://github.com/yasahi-hpc/vlp4d

★

★JH190065

https://github.com/yasahi-hpc/vlp4d

�14

Global algo. of GYSELA mini app (One time step)
 18 // Exchange halo of the local domain in order to perform
 19 // the advection afterwards (the interpolation needs the
 20 // extra points located in the halo region)
 21 comm.exchangeHalo(conf, fn, timers);
 22
 24 Spline::computeCoeff_xy(conf, fn);
 25 Impl::deep_copy(fnp1, fn);
 28
 30 Advection::advect_2D_xy(conf, fn, 0.5 * dom->dt_);
 33
 35 field_rho(conf, comm, fn, ef);
 36 field_poisson(conf, ef, dg, iter);
 39
 41 Spline::computeCoeff_vxvy(conf, fnp1);
 44
 46 Advection::advect_4D(conf, ef, fnp1, fn, dom->dt_);
 49
 51 field_rho(conf, comm, fnp1, ef);
 52 field_poisson(conf, ef, dg, iter);

MPI Comm
Boundary condition
spline coef (xy)
copy fn to fnp1
2D advection (xy)
fn updated
compute phi using fn

spline coef (xy vxvy)
4D advection (xy vxvy)
fnp1 updated

compute phi using fnp1

GYSELA mini-app is parallelized with MPI (P2P and all reduce comms)

Local spline is used for interpolation

All reduce communication in poisson solver can be masked by overlapping

�15

GPU (transpose in (ky, z))

1.
2.

Forward Transpose for

Data structure after operation

3.
4.
5.

2D IFFT in x, y for

Backward Transpose for
2D FFT in x, y for

[Y. Asahi et al., CCPE (2020)]

2D convolution by FFT (GKV hotspot)

Multiplication

0.

Hot spot of GKV code consists of transpose communication and 2D FFT
(convolution)
GKV mini app (2D derivative with FFT): Transpose + 2D FFT

�16

GKV mini-app in Kokkos
GKV mini-app: 2D derivative with FFT and transpose（pipelined）

 99 for(int ib = 0; ib < Nbatch; ++ib) {
100 // Forward transpose (Nx, Ny/py, Nz/batch) => (Nx, Ny, Nz/batch/py)
101 trans.forward(in, xy, ib);
102
103 // Forward transform (Nx, Ny, Nz/batch/py) => (Nx/2+1, Ny, Nz/batch/py)
104 fft.fft2(xy.data(), kxky.data());
105
106 // Derivative in Fourier space
107 float64 normcoeff = 1./float64(Nx*Ny);
108 Kokkos::parallel_for("derivative", derivative_policy2d,
 KOKKOS_LAMBDA (const int jx, const int jy) {
109 complex128 ikx_tmp = ikx(jx, jy);
110 complex128 iky_tmp = iky(jx, jy);
111 for(int jz=0; jz<Nz_local; jz++) {
112 kxky(jx, jy, jz) = (ikx_tmp * kxky(jx, jy, jz) + iky_tmp * kxky(jx, jy, jz))
 * normcoeff;
113 }
114 });
115
116 // Backward transform (Nx/2+1, Ny, Nz/batch/py) => (Nx, Ny, Nz/batch/py)
117 fft.ifft2(kxky.data(), xy.data());
118
119 // Backward transpose (Nx, Ny, Nz/batch/py) => (Nx, Ny/py, Nz/batch)
120 trans.backward(xy, out, ib);
121 }

Compute derivative in Fourier space

�17

std::thread with Kokkos for Overlap
 for(int ib = 0; ib < Nbatch + 4; ++ib) {
101 // Shallow copy
102 RealView4D send_forward0 = (ib % 2 == 0) ? trans.send_forward0_ : trans.send_forward1_;
103 RealView4D recv_forward0 = (ib % 2 == 0) ? trans.recv_forward0_ : trans.recv_forward1_;
 …
110
111 threads.emplace_back(
112 [&]() {
113 // Packing
114 if(ib < Nbatch) {
115 trans.forwardPack(in, send_forward0, ib);
116 }
118 // Unpacking, 2D operation, Packing
119 if(ib >= 2 && ib < Nbatch + 2) {
120 trans.forwardUnpack(recv_forward1, xy);
122 fft.fft2(xy.data(), kxky.data());
123 float64 normcoeff = 1./float64(Nx*Ny);
124 Kokkos::parallel_for("derivative", derivative_policy2d, KOKKOS_LAMBDA (const int jx, const int jy) {
125 complex128 ikx_tmp = ikx(jx, jy);
126 complex128 iky_tmp = iky(jx, jy);
127 for(int jz=0; jz<Nz_local; jz++) {
128 kxky(jx, jy, jz) = (ikx_tmp * kxky(jx, jy, jz) + iky_tmp * kxky(jx, jy, jz)) * normcoeff;
129 }
130 });
131 fft.ifft2(kxky.data(), xy.data());
132
133 trans.backwardPack(xy, send_backward0);
134 }
136 // Unpacking (backward transpose)
137 if(ib >= 4 && ib < Nbatch + 4) {
138 trans.backwardUnpack(recv_backward1, out, ib);
139 }
140 }
141);
143 // Communications
144 if(ib >= 1 && ib < Nbatch + 1) {
145 trans.comm(send_forward1, recv_forward0);
146 }
147 if(ib >= 3 && ib < Nbatch + 3) {
148 trans.comm(send_backward1, recv_backward0);
149 }
151 for(auto &th: threads) th.join();
152 std::vector<std::thread>().swap(threads); // cleanup
153 }

Kokkos kernel launched by
std::thread

[1] Y. Asahi, CCPE (2020)

Communication/Computation
overlap by pipelining [1]

�18

Objectives

Exascale simulation and data analysis

Performance portability

Scaling portable implementation
with Kokkos and OpenMP4.5
(overlapping communication and
computation using std::thread or
OpenMP task)

Scalable data analysis
Investigating performance of
directive based approach and
abstraction based approach [1]

In-situ machine learning to avoid
saving the huge data

Large scale data analysis based
on Dask
Analyzing the time series of 5D
distribution function [2]

[1] Y. Asahi et al., WACCPD 6, SC19
[2] Y. Asahi et al., to be submitted

★ C o m p l e t e d i n J H 1 9 0 0 6 5
“Modernizing and accelerating
fusion plasma turbulence codes
targeting exa-scale systems”

★

�19

Analyzing 5D gyrokinetic simulation data
1D time series 3D time series 5D time series

~kB

Structures of
radial profile

Structures of Fluid
moments

~10MB ~10GB

Phase structure

Conventional study This work

Conventional Study: 3D structures (like convective cells), 1D structures
(stair case, stiffness in temperature gradient)

This work: Extracting phase space structure from the time series of 5D
distribution function (pattern formation in phase space)

High dimensional + huge data

�20

PCA and Fourier Transform
Fourier decomposition on signals

c0Coefs

Bases

0 1 2 3ReconstructionInput

PCA (principal component analysis) on hand-written numbers
ReconstructionInput

Bases

Coefs

0 1 2 3

c00 c01 c02

c03 c04 c05

c06 c07 c08

Input Bases Coefficients Reconstruction

FFT on signals

PCA on numbers

c10 c11 c12

c13 c14 c15

c16 c17 c00

c20 c21 c22

c23 c24 c25

c26 c27 c28

c30 c31 c32

c33 c34 c35

c36 c37 c38

c1 c2 c3

Dimensionality reduction keeping important features in the data

Comps

Comps

Principal component analysis of distribution function
Analyzing 6D (3D space x 2D velocity x time) Terabyte data using Dask+Xarray

Samples Features Eigen distribution function (basis)

PCA

Easily manage out-of-memory data (> 1TB) without MPI parallelization
Random sampling 3D phase space data from

component = 0: Maxwellian, representing radial structure in temperature
component=1: Poloidal variation of distribution function

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

n = 18

n = 0 n = 0 n = 0 n = 12

n = 12 n = 0 n = 6 n = 6

n = 6 n = 12 n = 12 n = 0

�22

m

n

Huge data
(larger than memory)

Chunking into on memory tasks
which are managed by scheduler

 22 cluster = SLURMCluster(processes=1,
 23 cores=nb_cores,
 24 memory="150GB",
 25 project='GT5DSTC',
 26 name='worker',
 27 queue='S-M',
 28 walltime='00:30:00',
 29 interface='ipogif0')
 30
 31 # Typical size in incremental PCA
 32 X = da.random.random((10000, 100000), chunks=(1000, 100000)).persist()
 33 cluster.scale(nb_workers)
 34 client = Client(cluster)
 35
 36 start = time.time()
 37 u, s, v = da.linalg.svd_compressed(X, k=4)
 38
 39 future = u.compute()
 40 end = time.time()

Task level parallelization with Dask.distributed
Task graph

It took 28.68612051010132 [s] with nb_workers 1, nb_cores 1
It took 20.172788381576538 [s] with nb_workers 2, nb_cores 1
It took 17.562381744384766 [s] with nb_workers 4, nb_cores 1
It took 12.512330770492554 [s] with nb_workers 8, nb_cores 1

�23

Large scale PCA over 16 TB data
Electrons

Samples Features

Electron distribution function can be expressed with few components,
while ion distribution function needs much more components
16 TB reduced into 7GB with 83 % of cumulative
explained variance

Ions

Reference ReconstructedReference Reconstructed

�24

Decomposing turbulence into sub-physics

0: Magnetic geometry 1: Ballooning (n=12) 2: Ballooning (n=12) 3: Convective cells
4: Ballooning (n=12) 5: Ballooning (n=12) 6: ballooning (n=6) 7: ballooning (n=6)
8: Ballooning (n=6) 9: Ballooning (n=12) 10: ballooning (n=12) 11: Turbulent
12: Ballooning (n=18) 13: Ballooning (n=18) 14: Ballooning (n=18) 15: Ballooning (n=18)

Turbulence decomposed into geometry (0), ballooning,
convective cells (3)

Phase space basis (w = 0.125) Coefficients (r, theta)
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

[Note] simulation done with 1/6 wedge torus
n = 18

n = 0 n = 12 n = 12 n = 0

n = 12 n = 12 n = 6 n = 6

n = 6 n = 12 n = 12

n = 18 n = 18 n = 18

�25

Energy flux recovered from reduced data
Reference Energy flux by PCs

3 order reduction of the data size, still keeping the important
properties like avalanche like transport [1]

Approximated energy flux

[1] Y. Asahi, to be submitted to PoP

�26

MPI version of GYSELA/GKV mini apps with Kokkos

Scalable data analysis based on Dask

Goal: Submit a paper to a SC workshop (P3H3PC or WACCPD2020)

Goal: Submit a paper to computer science and/or physics journal

Target Conferences/Workshops
SC20, 15 November, Atlanta, US

Current plans/targets

Integrate Dask into GYSELA diags through PDI (developed by J. Bigot)

P3H3PC: Performance Portability, and Productivity
WACCPD2020: Directive based implementation needed

Good to show scalable approach over multiple platforms (including Fugaku)
Using std::thread + Kokkos and OpenMP4.5 offloading + task

In situ machine learning (starting with PCA?)

