jh200018-NAH

界面に適合するAMR法を用いた非圧縮性 気液二相流の完全陽解法計算とGPU実装 - MPF法による泡沫の計算 -

東京工業大学 学術国際情報センター

青木 尊之

共同研究体制

青木 尊之	東工大(研究代表者)	研究総括および計算手法から GPU実装に至る詳細な指示
白崎実	横国大(副代表者)	気液界面における表面張力項の 離散化と液膜安定性
高木 知弘	京都工芸繊維大(副代表者)	MPF法の導入助言
杉原 健太	東工大	GPU計算の高速化
松下 真太郎	東工大	弱圧縮性NSによる気液二相流 計算へのMPF法の実装
渡辺 勢也	九大	動的領域分割の実装
Yos Sitompul	東工大	LBMによる気液二相流計算への MPF法の導入とAPTの高速化

研究背景

泡沫(Foam)シミュレーション

準安定な液膜で隔壁が構成された気泡群: 食品:ビールの泡、パン、マシュマロ、ホイップクリーム、抹茶、カプチーノ

工業製品:発砲スチロール、軽量素材、洗剤、化粧品、・・・

超難易度の数値シミュレーション:

非常に薄い液膜の気液二相流(気泡径に対する液膜厚さのマルチスケール) 気液界面での界面活性剤等の輸送、非ニュートン性の顕在化 液膜を介した物質輸送・熱伝達

共同研究を実施する拠点名:九州大学・情報基盤研究開発センター ITO サブシステム B

弱圧縮性解法による完全陽解法

2018年度

圧縮性NS方程式:オイラー方程式+方向分離特性線法+Fractional Step

ノードセンター Octree-Based Block AMR+GPU実装

高解像度格子の気液界面適合

2019年度

圧縮性NS方程式:等温過程+Fractional Step

スタッガード格子 Octree-Based Block AMR+GPU実装

粘弹性、界面活性剤輸送、液膜安定化

2020年度

Cumulant型格子ボルツマン法+気液二相流への展開+ Multi-Phase Field モデルの導入 → 泡沫計算への展開

LBM: Lattice Boltzmann Method

• シンプルなアルゴリズムでGPU計算・大規模並列計算に適した手法

$$f_{ijk}(\boldsymbol{x} + \boldsymbol{\xi}_{ijk}\Delta t, t + \Delta t) = \frac{1}{\tau} f_{ijk}^{eq}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, t) + \left(1 - \frac{1}{\tau}\right) f_{ijk}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, t)$$

f :速度分布関数
 ijk:速度分布関数の方向
 ξ_{ijk}:速度分布関数の速度
 τ :緩和係数
 f^{eq}:局所平衡状態の分布関数

衝突過程の緩和時間係数

	1	ν	ν	: 動粘度
$\tau = -\frac{1}{2}$	$\frac{1}{2} + \frac{1}{c_1}$	$\frac{2}{5}\Delta t$	C _S	: 音速

衝突モデル	衝突過程	緩和係数の数
SRT (Single Relaxation Time)	分布関数	1
TRT (Two Relaxation Time) ^[1]	分布関数の対称・非対称成分	2
MRT (Multiple Relaxation Time) ^[2]	Moment	15, 19, 27
Cascaded ^[3]	Central Moment	27
Cumulant ^[4]	Cumulant	27

[1] Ginzburg, I., Verhaeghe, F., d'Humieres, D., Commun. Comput. Phys., 3, 427-478 (2008).

[2] D. d' Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Lou, Philos. Trans. R. Soc. London, Ser. A 360, 437 (2002).

[3] Geier, M., Greiner, A., & Korvink, J. G., Phys. Rev. E, 73, 066705 (2006).

[4] Geier, M., Schönherr, M., Pasquali, A., & Krafczyk, M., Comput. Math. Appl., 70(4), 507-547 (2015).

Cumulant衝突モデル

- 速度分布関数の非線形な変化
- ガリレイ不変性
- キュムラントの統計的独立

\Box

• 計算安定性の向上

f_{ijk} のラプラス変換

 $F(\Xi, \Upsilon, Z) = \mathcal{L}[f(\xi - u, v - v, \zeta - w)] = e^{-u\Xi - v\Upsilon - wZ} \int_{-\infty}^{\infty} f(\xi) e^{-\Xi \cdot \xi} d\xi$ $= e^{-u\Xi - v\Upsilon - wZ} \sum_{ijk} f_{ijk} e^{-\Xi ic} e^{-\Upsilon jc} e^{-Zkc}$ Cumulant統計量 $k_{\alpha\beta\gamma} = c^{-\alpha - \beta - \gamma} \frac{\partial^{\alpha} \partial^{\beta} \partial^{\gamma}}{\partial \Xi^{\alpha} \partial \Upsilon^{\beta} \partial Z^{\gamma}} \ln(F(\Xi, \Upsilon, Z)) \Big|_{\Xi = \Upsilon = Z = 0}$ 衝突項 $k_{\alpha\beta\gamma}^* = \omega_{\alpha\beta\gamma} k_{\alpha\beta\gamma}^{eq} + (1 - \omega_{\alpha\beta\gamma}) k_{\alpha\beta\gamma}$ $\alpha\beta\gamma: \Xi - X > h \otimes \Sigma$

Geier, M., Schönherr, M., Pasquali, A., & Krafczyk, M. Computers & Mathematics with Applications, 70(4), 507–547 (2015).

MPFによる泡沫シミュレーション

MPF (Multi-Phase Field) 法の導入

Transactions of JSCES, Paper No.20130018 「多結晶粒成長シミュレーション」岡本成史, 山中晃徳, 下川辺隆史, 青木尊之

Multi-phase Field model

$$\frac{\partial \phi_i}{\partial t} + \nabla \cdot (\phi_i \boldsymbol{u}) = D \left[\nabla \cdot \left\{ \nabla \phi_i - B \phi_i (1 - \phi_i) \frac{\nabla \phi_i}{|\nabla \phi_i|} \right\} - \frac{\phi_i^2}{\sum\limits_{j=1}^N \phi_j^2} \sum_{j=1}^N \left[\nabla \cdot \left\{ \nabla \phi_j - B \phi_j (1 - \phi_j) \frac{\nabla \phi_j}{|\nabla \phi_j|} \right\} \right] \right]$$

Solver: FVM, WENO-3, RK3

Density and viscosity:

$$\rho = \phi_d \rho_l + (1 - \phi_d) \rho_h$$

$$\mu = \phi_d \mu_l + (1 - \phi_d) \mu_h$$

$$\phi_d = \sum_l \phi_l$$

Surface tension:

$$\mathbf{F}^{s} = -\sum_{l} \sigma(\nabla \cdot \mathbf{n}_{l}) \nabla \phi_{l}$$

ATP (Active Parameter Tracking) 法

 ϕ_i を詰めて保存することで、メモリ使用量・計算コストを劇的に削減

Modified APT:

Phase-field variables

List of phase type

11

MPFによる泡沫シミュレーション

2020年度 JHPCN 課題:JH200018

3-D Foam formation

3-D Foam formation

今後の研究計画

■弱圧縮性二相流計算手法にMPF法を導入:

- さまざまな表面張力・粘性係数での泡沫の振る舞い
- ・粘弾性(非ニュートン性)の適切な考慮の検討
- 界面活性剤輸送の考慮

■LBM二相流コードにAMR法の導入と複数GPU実装

- ・動的負荷分散の導入し、大規模計算
- ・ MPF法による泡沫シミュレーションの研究展開