学際大規模情報基盤共同利用·共同研究拠点公募型共同研究 平成31年度採択課題

11th Symposium

jh190065-NAHI

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures

Yuuichi ASAHI (National Institutes for Quantum and Radiological Science and Technology)

Modernizing and accelerating fusion plasma turbulence codes targeting exa-scale systems

Background: Plasma turbulence simulation

- First principle model for plasma turbulence transport ${\circ}$
- Resolving machine scale (m) with particle scale mesh (cm) \bigcirc Velocity space structure due to collision-less features of plasma
- Concerning kinetic electrons, more computational power needed
- **5D** (3D space + **2D velocity space**) $100^5 \sim 10^{10}$ stencil computation
- → **GPU** porting completed in jh170020

Physical research plan: Kinetic electron model and particle transport

Global gyrokinetic code: GYSELA

- Plasma profile evolution
- **Simplified** physical models (hybrid electron model)
- Computational cost High
 [V. Grandirard et al., CPC(2016)]

0.045

0.030

0.015

0.000

-0.015

-0.030

-0.045

-0.060

Local gyrokinetic code: GKV

- **Fixed** plasma profile
- Advanced physical models (full kinetic electron)
- Computational cost Low [T.-H. Watanabe et al., NF(2006)]

GYSELA 🔳

Filter out poloidal asymmetry

[Y. Asahi et al., PPCF (2019)] Collisional energy transport affected by **asymmetry**

- Larger growth rate with non-adiabatic electron $\kappa > 0$
- Small kappa ~ adiabatic Large kappa ~ kinetic

Hybrid electron model works appropriately

- Complete verification tests of hybrid kinetic electron model in GYSELA
- Analyze the impact of poloidal asymmetry on particle transport with GYSELA

HPC research plan: Task level parallelization + Portable framework 2D advection (1 task: comp/comm on 1 tile)

- CPU threads spawn tasks std::thread() -Comm 2D advection Inside a tile P2P th.join()
- Gantt chart on 32 KNL nodes. (monitor: komp⁺, visualize: vite⁺⁺)
- Intuitive understanding of task execution order

FY2019: 4D advection (space 2D + velocity 2D)

Hours

7-8 hours

1 Week

3-4 hours

10 mins

Task

Original (1000 lines, OpenMP) to

Kokkos (GPU)

Debugging

cufft wrapper (200 lines, GPU) to fftw

wrapper (OpenMP)

- Vlasov: Semi-Lagrangian, Strang splitting
- Poisson: 2D FFT (Periodic boundary)

 \bigcirc

Performance

P100, Kokkos BDW, Kokkos: BDW, OpenMP:	0.155 [s] <mark>4.51 [s]</mark> 1.81 [s]		
Same code works			
on CPU/GPU			
Tast CPI I suitad			

Iest Upper Sulleu

Kokkos (GPU) to Kokkos (CPU) (e.g. idle time is the current issue) : tile_internal : idle

• Large amounts of tasks are not ideal for GPUs (fine for CPUs)

optimizations

komp[†]: https://gitlab.inria.fr/openmp/libkomp vite⁺⁺: http://vite.gforge.inria.fr/index.php kokkos^{†††}:https://github.com/kokkos/kokkos

Collaborations: Kinetic electron + Task level Parallelization + AMR

French	Gro	up
--------	-----	----

Physics

- Turbulence profile interaction
- Impact of symmetry breaking

HPC

- Task-level parallelization in GYSELA prototype
- GYSELA prototype on GPUs

Physics

- Develop kinetic electron model
- Characterize local transport

HPC

- Task-level parallelization in **GKV** code
- Testing AMR in mini-app

• Visiting CEA to discuss HPC and physical topics (28/June-5/July)

Porting cost with **Kokkos**⁺⁺⁺

Submitting physics (Q2 or Q3) and HPC (Q2) papers \circ

Research group and roles

Y. ASAHI (QST) **Code development** Representative: S. Maeyama (Nagoya Univ.) **Deputy Representative: Plasma turbulence** Deputy Representative: G. Latu (CEA) **Task-level** parallelization Collaborating researcher: X. Garbet (CEA) **Global plasma turbulence** Local plasma turbulence Collaborating researcher: T.-H. Watanabe (Nagoya Univ.) Collaborating researcher: T. Aoki (Tokyo Tech.) **Optimization on GPU** Collaborating researcher: M. Ogino (Daido Univ.) **Optimization on CPU**

JHPCN

学際大規模情報基盤共同利用・共同研究拠点第11回シンポジウム

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

2019年7月11日,12日

THE GRAND HALL (品川)