11th Symposium

jh190031-NAJ

佐々木大輔(金沢工業大学)

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures

Investigation of Sound-Flow Interaction of Acoustic Liner using CFD/CAA Hybrid Approach

Background and Objective

Background

- Fan is one of major noise sources and further noise reduction for the future aircraft development is required
 - Ultra High Bypass (UHB) turbofan for higher efficiency
 - Acoustic liner is equipped to reduce fan noise
 - Structural and weight limitation for acoustic liner

Acoustic liner plays more important role in high sound absorption for wide frequency range

Fundamental of Helmholtz Resonator

Sound absorption principle (without grazing flow)

- The air in the neck and the air in the cavity works as a mass-spring system (resonant frequency)
- Energy loss caused by a resonator results in sound absorption
 - Loss occurs in viscous boundary layer at walls of resonator neck
 - Acoustical energy dissipation at edge of resonator

Principle of Helmholtz resonator

Objectives

【1】 大石勉, 「航空機騒音源の低減 対策について」, 日本音響学会誌, 73 巻, 11号, 2017年

(a)動翼前方ファンケースに装着の吸音ライナ (b)吸音ライナ部拡大写真

- Acoustic liner attached at intake [1]
- The characteristics of acoustic liners:
 - Sound absorption performance is changed due to the existence
 - of grazing flow

- Non-linear effect appears at high incident sound level and high Mach number grazing flow
- Interaction of sound and flow needs to be investigated for the understanding and design of a new liner

Time-domain direct CFD analysis of acoustic liner model is useful

Research Institutes and Members

- CFD/CAA Algorithm Development and Applications
- Kanazawa Institute of Technology (D. Sasaki)

3D Extension of Solver

 Cyberscience Center, Tohoku University (R. Egawa, K. Komatsu)

Objectives

- CFD/CAA algorithm development and validation based on Cartesian mesh for acoustic liner model
- Application of direct CFD/CAA solver to investigate the influence of multiple resonators to sound and flows
- 3D extension of solver for more realistic geometry (multiple orifices, various shapes, etc.)

Fundamental Model and Numerical Methods

Numerical Methods

- 2D Compressible BCM (planned for 3D extension)
- Direct Numerical Simulation (DNS)
- 4th-order Runge-Kutta method (time-marching)
- 5th-order WENO scheme (space)

Inflow Boundary Condition

- Mach Number: 0 / 0.088
 (Re13123 based on opening width)
- Laminar Boundary Layer (Blasius solution)
- Incident sound wave: plane sine wave (120 dB)
- Acoustic sponge region

Outflow Boundary Condition

Acoustic Liner Expertise (Analysis of Application Results)

 Institute of Sound and Vibration Research, University of Southampton (R. Sugimoto, P. Murray)

Planned computational resources at Tohoku university

- Vector supercomputer (SX-ACE)
- Scalar parallel computer (LX406Re2)
- 3D Visualization

Project Representative: dsasaki@neptune.kanazawa-it.ac.jp

Acoustic sponge region

Model Example

- Multiple-resonator case (3 resonators)
- 100 minimum-size cells for opening width

JHPCN

学際大規模情報基盤共同利用・共同研究拠点第11回シンポジウム

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

2019年7月11日, 12日

THE GRAND HALL (品川)

Flowchart of BCM