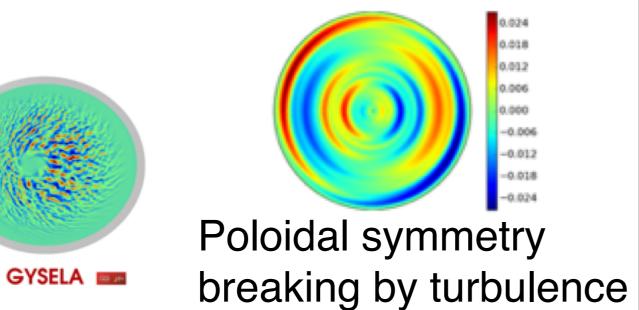
学際大規模情報基盤共同利用·共同研究拠点公募型共同研究 平成30年度採択課題

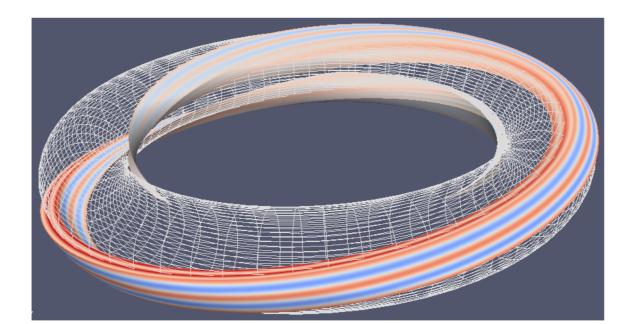
10th Symposium

jh180081-NAHI

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures

Yuuichi ASAHI (National Institutes for Quantum and Radiological Science and Technology)

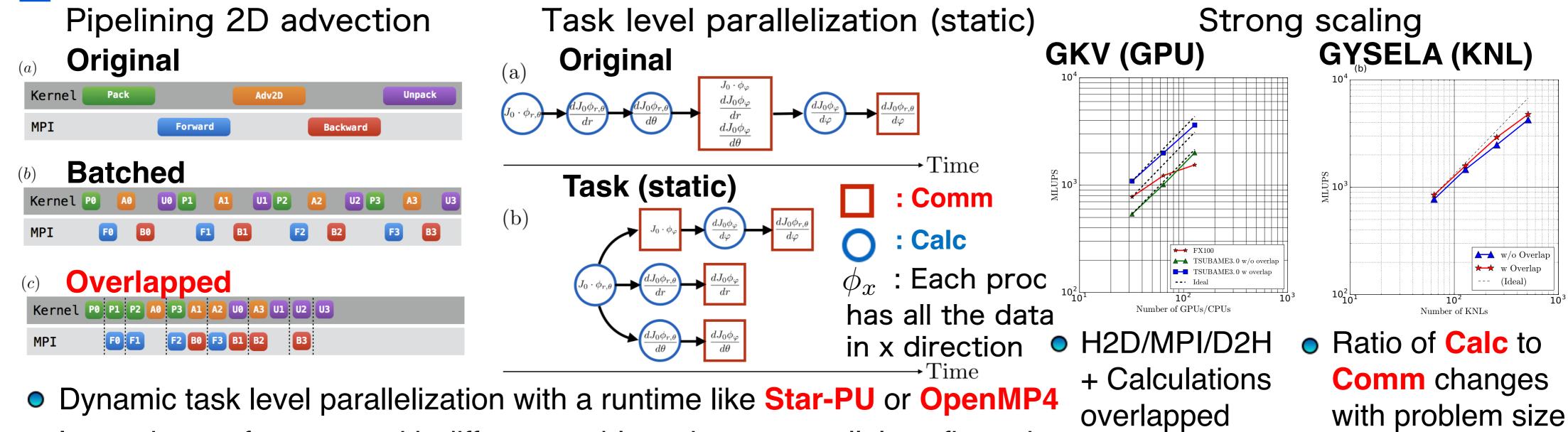

Optimisation of Fusion Plasma Turbulence Code toward Post-Petascale Era III


Background: Plasma turbulence simulation

- First principle model for plasma turbulence transport ${\circ}$
- Resolving the machine scale (m) with the particle scale mesh (cm) 5D (3D space + 2D velocity space) \bigcirc $100^5 \sim 10^{10}$ stencil computation Velocity space structure due to collision-less features of plasma
- Concerning the dynamics of kinetic electrons, more computational ____ Accelerators are key ingredients: GPU resource is needed (porting completed in jh170020)

Physical research plan: Kinetic electron model and particle transport Local gyrokinetic code: GKV

Global gyrokinetic code: GYSELA



- Self-consistent plasma profile evolution
- **Simplified** physical models (no kinetic electrons)
- Computational cost **High** [V. Grandirard et al., CPC(2016)]
- **Fixed** plasma profile (local simulation)
- Advanced physical models (kinetic electron)
- [T.-H. Watanabe et al., NF(2006)] Computational cost Low
- Implement hybrid kinetic electron model in GKV and compare with the full kinetic electron model (low cost) \bigcirc
- Implement hybrid kinetic electron model in GYSELA which satisfies the physical requirements
- Investigate the impacts of symmetry breaking (figure above) on particle transport ⁺ with GYSELA

[†]Particle transport: Important mechanism for fuel supply、Kinetic response of electrons are essential

HPC research plan: Task level parallelization + runtime

• Improving performance with different problem sizes or parallel configuration [C. Augonnet et al., Euro-Par 2009 (2011)]

Collaborations: Kinetic electron model + Task level Parallelization

French Group

Physics

- Turbulence profile interaction
- Impact of symmetry breaking HPC
- Task-level parallelization in GYSELA prototype • GYSELA prototype on GPUs

Japanese Group

Physics

- Develop kinetic **electron model**
- Characterize local transport HPC
- Task-level parallelization in **GKV** code • Implicit collision operator
- Visiting CEA to discuss HPC and physical topics with G. Latu and X. Garbet (Q2 or Q3)
- Submitting physics (Q2 or Q3) and HPC (Q2) papers

Research group and roles

tative:	Y. ASAHI (QST)	Code development
epresentative:	S. Maeyama (Nagoya Univ.)	Plasma turbulence
epresentative:	G. Latu (CEA)	Task-level parallelization
ting researcher:	X. Garbet (CEA)	Global plasma turbulence
ting researcher:	TH. Watanabe (Nagoya Univ.)	Local plasma turbulence
ting researcher:	T. Aoki (Tokyo Tech.)	Optimization on GPU
ting researcher:	M. Ogino (Nagoya Univ.)	Optimization on CPU
	epresentative: epresentative: ting researcher: ting researcher: ting researcher:	epresentative:S. Maeyama (Nagoya Univ.)epresentative:G. Latu (CEA)ting researcher:X. Garbet (CEA)ting researcher:TH. Watanabe (Nagoya Univ.)ting researcher:T. Aoki (Tokyo Tech.)

JHPCN

学際大規模情報基盤共同利用・共同研究拠点第10回シンポジウム

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

2018年7月12日,13日

THE GRAND HALL(品川)