森高 外征雄（核融合科学研究所）

Gyrokinetic simulation of divertor heat－load in magnetic fusion devices

Collaborating Researchers

T．Aoki（GSIC，Tokyo Institute of Technology）
C－S．Chang，S．Ethier，S．Ku，R．Hager and A．Scheinberg（PPPL）
S．Klasky，J．Choi and E．D＇Azevedo（ORNL）
E．Yoon（UNIST）Y．Idomura（JAEA）S．Ishiguro（NIFS）

Introduction

International Thermonuclear Experimental Reactor（ITER）under construction
－Nuclear fusion reactions，e．g．，D－T reaction，can be a sustainable energy source to meet world－wide energy demands．
－To produce net power from the reactions，we have to confine the fuels with high temperature（＞ $10^{8}{ }^{\circ} \mathrm{C}$ ）in the reactor．
－Strong magnetic fields can be employed to confine the fuels in plasma states．
－Torus－type magnetic configurations with twisting field lines have been proposed for the magnetic fusion devices．

X－point Gyrokinetic Code（XGC）

－A gyrokinetic particle－in－cell code designed for whole device modeling of magnetic fusion devices．

1．Kinetic description of magnetized plasma
2．Hybrid use of marker particle and phase－ space grid

Low－noise treatment of non－thermal dynamics［1］
Fokker－plank and Monte－Carlo approaches for collisional interactions［2］
3．Finite element field solver on unstructured mesh generated based on the structures of field lines and vessel components［3］

Summary

－Gyrokinetic code，XGC，and I／O framework，ADIOS，have been combined for whole device modeling of magnetic fusion devices．
－These will be optimized to cutting edge super computers toward a comparative study of divertor heat load in various fusion devices．

Motivation

－Precise prediction of divertor heat load by means of whole device kinetic modeling has a critical importance in ITER operation and future reactor designs．
－Robust computational model and large computational resources are required for multi－physics simulation including core and edge regions．
－Core plasma－slow evolution

－burning plasma in closed field lines －nearly equilibrium states －collisionless／cross－field transport －wave－particle interaction in turbulence

－Edge plasma－fast evolution

 interface to the wall in open field lines highly non－thermal states collisional／field－aligned transport plasma－wall（neutral）interactionITER Physics Basis Editors et al 1999 Nucl．Fusion
－XGC and ADIOS have been used to estimate the heat－load width in the present Tokamaks in USA and ITER．For the ITER case 90% of TITAN，the world＇s largest GPU machine，was occupied for a few days．
－We will optimize XGC and ADIOS to the latest GPU machine，
TSUBAME3，toward more efficient computations for remaining fusion devices such as JT60－SA（Japan）to understand the size and shaping effects on divertor heat load． $\mathbf{B}_{\mathrm{pol}, \mathrm{MP}}[\mathrm{T}]$

ADaptable I／O System（ADIOS）

－Componentization for fast \＆scalable I／O framework［4］

Overview of ADIOS（ver．1．6）

－Optimal＂on－the－fly＂data aggregation，relocation and reduction among massive parallel computational，staging and I／O nodes．
－Applications ：Large scale computing（1～10PB／day for XGC）， real－time data analysis，visualization，code coupling and so on

