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repeatedly in a policy iteration procedure22,23 : the neural network’s 
parameters are updated to make the move probabilities and value (p, 
v) =  fθ(s) more closely match the improved search probabilities and self-
play winner (π, z); these new parameters are used in the next iteration 
of self-play to make the search even stronger. Figure 1 illustrates the 
self-play training pipeline.

The MCTS uses the neural network fθ to guide its simulations (see 
Fig. 2). Each edge (s, a) in the search tree stores a prior probability 
 P(s, a), a visit count N(s, a), and an action value Q(s, a). Each simulation 
starts from the root state and iteratively selects moves that maximize  

an upper confidence bound Q(s, a) +  U(s, a), where U(s, a) ∝  P(s, a) /  
(1 +  N(s, a)) (refs 12, 24), until a leaf node s′ is encountered. This leaf 
position is expanded and evaluated only once by the network to gene-
rate both prior probabilities and evaluation, (P(s′ , ·),V(s′ )) =  fθ(s′ ).  
Each edge (s, a) traversed in the simulation is updated to increment its 
visit count N(s, a), and to update its action value to the mean evaluation  
over these simulations, = / ∑ ′| →′ ′Q s a N s a V s( , ) 1 ( , ) ( )s s a s,  where  
s, a→ s′ indicates that a simulation eventually reached s′  after taking 
move a from position s.

MCTS may be viewed as a self-play algorithm that, given neural 
network parameters θ and a root position s, computes a vector of search 
probabilities recommending moves to play, π =  αθ(s), proportional to 
the exponentiated visit count for each move, πa ∝  N(s, a)1/τ, where τ is 
a temperature parameter.

The neural network is trained by a self-play reinforcement learning 
algorithm that uses MCTS to play each move. First, the neural network 
is initialized to random weights θ0. At each subsequent iteration i ≥  1, 
games of self-play are generated (Fig. 1a). At each time-step t, an MCTS 
search π α= θ − s( )t ti 1  is executed using the previous iteration of neural 
network θ −f

i 1
 and a move is played by sampling the search probabilities 

πt. A game terminates at step T when both players pass, when the 
search value drops below a resignation threshold or when the game 
exceeds a maximum length; the game is then scored to give a final 
reward of rT ∈  {− 1,+ 1} (see Methods for details). The data for each 
time-step t is stored as (st, πt, zt), where zt =  ±  rT is the game winner 
from the perspective of the current player at step t. In parallel (Fig. 1b), 
new network parameters θi are trained from data (s, π, z) sampled 
uniformly among all time-steps of the last iteration(s) of self-play. The 
neural network = θp v f s( , ) ( )

i
 is adjusted to minimize the error between 

the predicted value v and the self-play winner z, and to maximize the 
similarity of the neural network move probabilities p to the search 
probabilities π. Specifically, the parameters θ are adjusted by gradient 
descent on a loss function l that sums over the mean-squared error and 
cross-entropy losses, respectively:

π θ= = − − +θp pv f s l z v c( , ) ( ) and ( ) log (1)2 T 2

where c is a parameter controlling the level of L2 weight regularization 
(to prevent overfitting).

Empirical analysis of AlphaGo Zero training
We applied our reinforcement learning pipeline to train our program 
AlphaGo Zero. Training started from completely random behaviour and 
continued without human intervention for approximately three days.

Over the course of training, 4.9 million games of self-play were gen-
erated, using 1,600 simulations for each MCTS, which corresponds to 
approximately 0.4 s thinking time per move. Parameters were updated 
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Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The 
program plays a game s1, ..., sT against itself. In each position st, an MCTS 
αθ is executed (see Fig. 2) using the latest neural network fθ. Moves are 
selected according to the search probabilities computed by the MCTS, 
at ∼   πt. The terminal position sT is scored according to the rules of the 
game to compute the game winner z. b, Neural network training in 
AlphaGo Zero. The neural network takes the raw board position st as its 
input, passes it through many convolutional layers with parameters θ, 
and outputs both a vector pt, representing a probability distribution over 
moves, and a scalar value vt, representing the probability of the current 
player winning in position st. The neural network parameters θ are 
updated to maximize the similarity of the policy vector pt to the search 
probabilities πt, and to minimize the error between the predicted winner vt 
and the game winner z (see equation (1)). The new parameters are used in 
the next iteration of self-play as in a.
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Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the 
tree by selecting the edge with maximum action value Q, plus an upper 
confidence bound U that depends on a stored prior probability P and 
visit count N for that edge (which is incremented once traversed). b, The 
leaf node is expanded and the associated position s is evaluated by the 
neural network (P(s, ·),V(s)) =  fθ(s); the vector of P values are stored in 

the outgoing edges from s. c, Action value Q is updated to track the mean 
of all evaluations V in the subtree below that action. d, Once the search is 
complete, search probabilities π are returned, proportional to N1/τ, where 
N is the visit count of each move from the root state and τ is a parameter 
controlling temperature.
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