
-�*vS<'&^���\Ö��adCYe��#ÃÕÏÄ¿Ð

20185 7N 12IÚ13I

THE GRAND HALL Ø!2Ù

-�*vS<'&^���\Ö��adCY��%��ad4=3056DB|� 10th Symposium

*vS±7�-kAs³.y°:\

�+`� �O�*-�

������������

admK°_]

7�-k@U³��
• DQN, A3C (Atari 2600)
• AlphaGo Zero ($b), Alpha Zero (0QÖÈÀÅ)

��³`}±¦¯��½�¡ª

$b0Q½�±/~²*vS7�-k³`u½qc
• Eg³�Z�²¹»-k³���
• xf�X³�W

-kiP³�w�°{J
• �±©¥³1�«°¥³@£z�£��³¢�

ARTICLE RESEARCH

1 9 O C T O B E R 2 0 1 7 | V O L 5 5 0 | N A T U R E | 3 5 5

repeatedly in a policy iteration procedure22,23 : the neural network’s
parameters are updated to make the move probabilities and value (p,
v) = fθ(s) more closely match the improved search probabilities and self-
play winner (π, z); these new parameters are used in the next iteration
of self-play to make the search even stronger. Figure 1 illustrates the
self-play training pipeline.

The MCTS uses the neural network fθ to guide its simulations (see
Fig. 2). Each edge (s, a) in the search tree stores a prior probability
 P(s, a), a visit count N(s, a), and an action value Q(s, a). Each simulation
starts from the root state and iteratively selects moves that maximize

an upper confidence bound Q(s, a) + U(s, a), where U(s, a) ∝ P(s, a) /
(1 + N(s, a)) (refs 12, 24), until a leaf node s′ is encountered. This leaf
position is expanded and evaluated only once by the network to gene-
rate both prior probabilities and evaluation, (P(s′ , ·),V(s′)) = fθ(s′).
Each edge (s, a) traversed in the simulation is updated to increment its
visit count N(s, a), and to update its action value to the mean evaluation
over these simulations, = / ∑ ′| →′ ′Q s a N s a V s(,) 1 (,) ()s s a s, where
s, a→ s′ indicates that a simulation eventually reached s′ after taking
move a from position s.

MCTS may be viewed as a self-play algorithm that, given neural
network parameters θ and a root position s, computes a vector of search
probabilities recommending moves to play, π = αθ(s), proportional to
the exponentiated visit count for each move, πa ∝ N(s, a)1/τ, where τ is
a temperature parameter.

The neural network is trained by a self-play reinforcement learning
algorithm that uses MCTS to play each move. First, the neural network
is initialized to random weights θ0. At each subsequent iteration i ≥ 1,
games of self-play are generated (Fig. 1a). At each time-step t, an MCTS
search π α= θ − s()t ti 1 is executed using the previous iteration of neural
network θ −f

i 1
 and a move is played by sampling the search probabilities

πt. A game terminates at step T when both players pass, when the
search value drops below a resignation threshold or when the game
exceeds a maximum length; the game is then scored to give a final
reward of rT ∈ {− 1,+ 1} (see Methods for details). The data for each
time-step t is stored as (st, πt, zt), where zt = ± rT is the game winner
from the perspective of the current player at step t. In parallel (Fig. 1b),
new network parameters θi are trained from data (s, π, z) sampled
uniformly among all time-steps of the last iteration(s) of self-play. The
neural network = θp v f s(,) ()

i
 is adjusted to minimize the error between

the predicted value v and the self-play winner z, and to maximize the
similarity of the neural network move probabilities p to the search
probabilities π. Specifically, the parameters θ are adjusted by gradient
descent on a loss function l that sums over the mean-squared error and
cross-entropy losses, respectively:

π θ= = − − +θp pv f s l z v c(,) () and () log (1)2 T 2

where c is a parameter controlling the level of L2 weight regularization
(to prevent overfitting).

Empirical analysis of AlphaGo Zero training
We applied our reinforcement learning pipeline to train our program
AlphaGo Zero. Training started from completely random behaviour and
continued without human intervention for approximately three days.

Over the course of training, 4.9 million games of self-play were gen-
erated, using 1,600 simulations for each MCTS, which corresponds to
approximately 0.4 s thinking time per move. Parameters were updated

Self-play

Neural network training

a

b

s1 s2 s3 sT
a1 ~ S1 a2 ~ S2 at ~ St

zS3S2S1

s1 s2 s3

fT fT fT

z

S3S2S1

p1 v1 p2 v2 p3 v3

Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The
program plays a game s1, ..., sT against itself. In each position st, an MCTS
αθ is executed (see Fig. 2) using the latest neural network fθ. Moves are
selected according to the search probabilities computed by the MCTS,
at ∼ πt. The terminal position sT is scored according to the rules of the
game to compute the game winner z. b, Neural network training in
AlphaGo Zero. The neural network takes the raw board position st as its
input, passes it through many convolutional layers with parameters θ,
and outputs both a vector pt, representing a probability distribution over
moves, and a scalar value vt, representing the probability of the current
player winning in position st. The neural network parameters θ are
updated to maximize the similarity of the policy vector pt to the search
probabilities πt, and to minimize the error between the predicted winner vt
and the game winner z (see equation (1)). The new parameters are used in
the next iteration of self-play as in a.

Repeat

Select Expand and evaluate Backup Play

Q + U Q + U
max

Q + U Q + Umax

V
P P

P P

V V V

Q Q

V

QQ

VV
P P

(p,v) = fT

DT

S

a b c d

Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the
tree by selecting the edge with maximum action value Q, plus an upper
confidence bound U that depends on a stored prior probability P and
visit count N for that edge (which is incremented once traversed). b, The
leaf node is expanded and the associated position s is evaluated by the
neural network (P(s, ·),V(s)) = fθ(s); the vector of P values are stored in

the outgoing edges from s. c, Action value Q is updated to track the mean
of all evaluations V in the subtree below that action. d, Once the search is
complete, search probabilities π are returned, proportional to N1/τ, where
N is the visit count of each move from the root state and τ is a parameter
controlling temperature.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

�G¯�
• xf�X³l*�

AlphaGo Zero ³�[²´ 1700 5¢¢»

• -kiP³��;³Ry
±©¥³iP²±»³¢��²{J

°� |�

1�/²¹»-k³���

References
1. D. Silver et al, “Mastering the game of Go without human knowledge”, In: Nature 24270
2. O. David et al, “DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess”, In: ICANN 2016

-k"³{J

2­³1�³��½-k§»¥°²¹º9t±-k1�
(i.e.o3/>#F) ½�W
→ Learning to Rank ²¹¬®�
�F½-k
-k³Ê×ÆF½��³Á×Ç×¯)¸¨»

H,@U°T�¦®�
]²;n£ �

-k¦ªÌÑ×ÒÓÍÉËÔ×Â£�¹¤u®�»�(?½�w�
Saliency Map ½\�®M·V_¦®�»	j½Î¾Ò¾Ë

�8

��: [1]

• Eg��³�Z�½r��-k½L²���
• µ«p¤¼¢¬®�±�1�½¹º�w§»¹ ±Eg

• Eg½h¶�¼¨ª-k"³{J

