jh180026-NAJ

Das Bhanu Pratap (Tokyo Institute of Technology)

High Performance Computational (HPC) Studies on Beyond the Standard Model of Particle Physics using Atoms

Members

A. Sakurai⁽¹⁾, N. Shitara⁽¹⁾, K. Sanada⁽¹⁾, V. S. Prasannaa⁽²⁾, B. K. Sahoo⁽²⁾, M. Abe⁽³⁾, T. Watanabe⁽¹⁾, K. Dyall⁽⁴⁾, and R. Harrison⁽⁵⁾

(1): Tokyo Institute of Technology, Tokyo, (2): Physical Research Laboratory, India, (3) Metropolitan University, Tokyo, (4): Schrodinger Inc, USA, (5): Stony Brook University, USA

Theoretical method Background The Atomic EDM **1. Electric Dipole Moment(EDM) of Atom** $H_a = \sum_{i=1}^{N_e} \left[c \boldsymbol{\alpha}_i \cdot \boldsymbol{p}_i + \beta_i c^2 + V(r_i) \right] + \sum_{i=1}^{N_e} \frac{1}{r_{ii}} + \lambda H_{PTV}$ The expectation value of the EDM (D) is can First order perturbation theory $|\Psi\rangle = |\Psi^{(0)}\rangle + \lambda |\Psi^{(1)}\rangle \qquad H_0 |\Psi^{(0)}\rangle = E_0 |\Psi^{(0)}\rangle \qquad (H_0 - E_0) |\Psi^{(1)}\rangle = (E_1 - H_{\rm PTV}) |\Psi^{(0)}\rangle \qquad (H_0 - E_0) |\Psi^{(1)}\rangle = (E_1 - H_{\rm PTV}) |\Psi^{(0)}\rangle \qquad (H_0 - E_0) |\Psi^{(1)}\rangle = (E_1 - H_{\rm PTV}) |\Psi^{(0)}\rangle = (E_1 - H_{\rm PTV$ be represented by angular momentum (J). Wigner–Eckart theorem $\langle \Psi | D | \Psi angle \propto \langle \Psi | J | \Psi angle$ The atomic EDM $D_a = \langle \Psi | D | \Psi \rangle \Longrightarrow D_a / \lambda = 2 \langle \Psi^{(0)} | D | \Psi^{(1)} \rangle$ If the atom has P&T symmetry, EDM is zero The accuracy of the atomic EDM depends on the zeroth order atomic state $(|\Psi^{(0)}\rangle)$ EDM of Atom is non-zero **Dirac-Fock(DF)** Method = Parity and Time-reversal are violated (PTV) **DF** Approximation

2. Why are EDMs of closed shell atom important ?

Can give information on hadronic and semi-leptonic CP-violating (T-violating) quantities of the Standard and beyond Standard Model.

Hadronic sector :
Semi-leptonic sector :

$$\begin{array}{c|c}
\theta_{\text{QCD}} \\
SM \\
C_T^{(u)} \\
C_T^{(d)} \\
BSM
\end{array}$$

$$\begin{array}{c|c}
\widetilde{d_u} \\
\widetilde{d_u} \\$$

- Evidence for new physics beyond the Standard Model
- Evidence for Time-reversal /CP violation and may be related to matterantimatter asymmetry in the Universe.

Theory of Atomic EDM

The physical quantity in quantum mechanics is given by the Hamiltonian of the interest system. The atomic Hamiltonian is given by

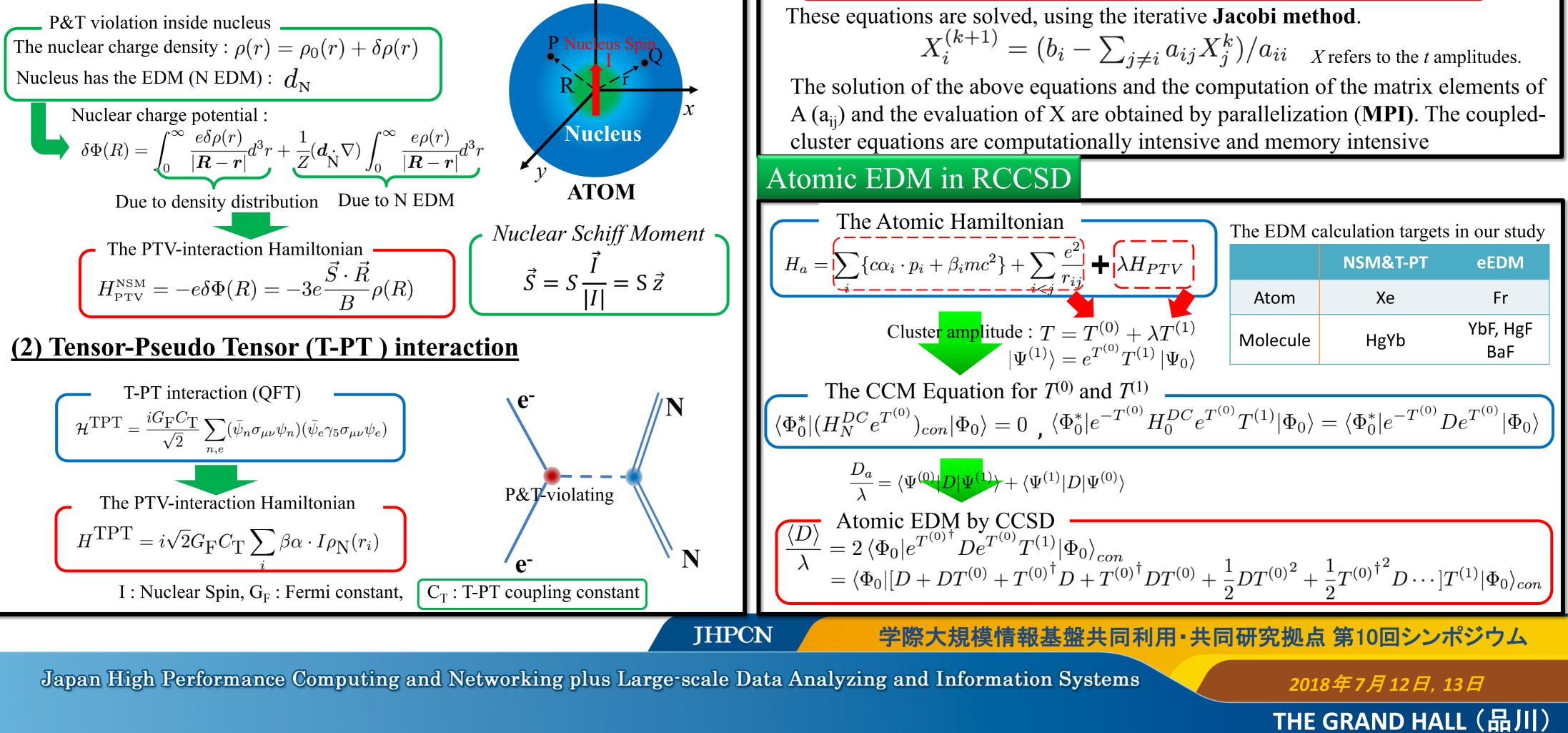
$$H_a = \sum_{i}^{N_e} \left[c \boldsymbol{\alpha}_i \cdot \boldsymbol{p}_i + \beta_i c^2 + V(r_i) \right] + \sum_{i < j} \frac{1}{r_{ij}} + \lambda H_{PTV}$$

• The original atomic Hamiltonian is P&T invariant, therefore we need to introduce the PTV interaction term in the Hamiltonian. The closed shell atoms has two important PTV-Interaction term

(1) Schiff-Momment ($\lambda = S$)

(2) Tensor-Pseudo Tensor (T-PT) interaction ($\lambda = C_T$)

(1) Nuclear Schiff-Moment (NSM)



Each orbital $(|\phi_i\rangle)$ is a four component spinor. $(i = 1, \dots, N)$ The atomic state is expressed by the N×N Slater determinant : $|\Phi_0\rangle = \text{Det}\{\phi_1\phi_2\cdots\phi_N\}$

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures

Each orbital ($|\phi_i\rangle$) is solution of following equation.

Dirac-Fock equation (the differential equation)

 $t |\phi_i\rangle + \sum_{j} \{ \langle \phi_j | v | \phi_j \rangle | \phi_i \rangle - \langle \phi_j | v | \phi_i \rangle | \phi_i \rangle \} = \epsilon_i |\phi_i\rangle$

Coupled Cluster Method (CCM)

The DF is called the Mean field approximation. Because, it does not consider the electron correlation effects (due to the residual interaction).

$$H_a = T + V_{DF} + (V - V_{DF})$$

DF Residual interaction

The exact atomic wave-function can be represented by DF state ($|\Phi_0\rangle$) plus a set of all particle-hole states ($|\Phi_{ij\cdots}^{ab\cdots}\rangle$) with reference to the DF state.

$$|\Psi\rangle = e^{T} |\Phi_{0}\rangle = e^{T_{1}+T_{2}+\cdots} |\Phi_{0}\rangle$$

$$|\Psi\rangle = \overline{\begin{array}{c} \bullet \\ |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{1} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{1}^{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{1}T_{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{1}T_{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{1}T_{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ T_{1}T_{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle } + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle \end{array}} + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0}\rangle } + \overline{\begin{array}{c} \bullet \\ \frac{1}{2!}T_{2}^{2} |\Phi_{0$$

Cluster amplitudes $(t_{ij}^{ab\cdots})$ represent the probability amplitude of particles-holes excitation due to the residual interaction. These are given by CCM equations.

The CCM Equations

$$t:\langle \Phi_i^a | (H_N e^T)_c | \Phi_0 \rangle = 0 \qquad t_{ij}^{ab}:\langle \Phi_{ij}^{ab} | (H_N e^T)_c | \Phi_0 \rangle = 0$$