	_		
<i>中村知裕 (北海道大学)</i> 環オホーツク圏の海洋	・大気シミュレーシ	マミン	JHPCNO
概要: 環オホーツク圏(オホーツク海 これらのより良い理解と数値シ	とその周辺地域)では科学的に興味深く社会 ミュレーションによる再現・予測が求められて	的に重要な気候・環境の形成およびそれらの長期変動が生じており、 いる。	
 1) 冬季には、大規 えるため、海水 伴い、大気・陸 	現模な海氷生成が起こる結果、北太平洋ほぼ この密度が高くなる。この高密度海水生成と千 域・海底堆積物起源の様々な物質が北太平?	全域の海洋中層循環に影響を与えている。海氷生成の際には、塩が不純物 島列島域での潮汐による鉛直混合により、オホーツク海から北太平洋に広た 羊中層に取り込まれ循環する。	」として排出される上に、海水が結氷点まで冷 がる中層熱塩循環が駆動される。この循環に
2) 環オホーツク圏を果たす。このには極めて溶	3では、世界最大規模の基礎生産(海洋植物: 基礎生産には、上述の中層熱塩循環により避 けにくいため多くの海域で基礎生産を律速して	プランクトン増殖)が生じている。高い基礎生産は、食物連鎖を通し豊富な水 星ばれて来た「鉄」が重要である。鉄は2価と3価のイオンを持つことから光合 こいる。例外的に環オホーツク圏では、中層循環に伴う鉄供給のおかげで鉄・	産資源を生み出し、炭素循環にも重要な役割 :成等における電子伝達に使われるが、海水 律速がかかりづらい。
3) 近年、環オホー、 、基礎生産への 4) また、オホーツ	-ック圏は顕著な温暖化にさらされている。オオ D影響が危惧されている。 ク海周辺では下層雲(高度の低い雲)や霧が	ホーツク海の海氷面積も減少傾向にあり、オホーツク海起源の熱塩循環・物 頻繁に形成される。下層雲は、夏季は日射の遮蔽と赤外放射により海面や!	質循環の弱化傾向が観測されていることから 陸面を冷却し、冬季は大量の降雪をもたらす。
研究代表者らのグループでは と熱塩循環、(b)潮汐による鉛I の高速化チューニングを検討	、環オホーツク圏の気候・環境の形成と変動の 直混合過程、(c)オホーツク海周辺の下層雲ー する。	Dより良い理解のために、環オホーツク圏の気候・環境に重要な3つの現象 についてシミュレーション研究を行う。加えて、これらシミュレーションの効率†	(a)オホーツク海を起源とする栄養物質循環 化と大規模化に向けて、使用する数値モデル
モデルの高速化 (大 ^{宮学・中村知裕)}	栄養物質循環ノ熱サ	島循環(中野渡拓也・吉成浩志・中村知裕・三寺史夫) の学奏物質(鉄)が、海洋熱塩循環で運ばれ、基礎	*生産を高める。
高速化チューニングによ りモデルの長期積分と 高分解能化そして実験 の効率化を図る。 これまで('10-13年度):	 オホーワワ海陸棚田米 これまで('10-13年度): ・熱塩循環 ● 経年変動シミュレーション と要因解析 −高分解能熱塩循環 シミュレーション 		主生性を高める。 鉄循環経年変動の感度実験('14年度)
 (1)大気モデルの高速化 SMP並列チューニング (自動並列化の一部抑止、 スレッドローカル化、 強制SMP並列) MPI並列チューニング (水平2次元領域分割) 	 物質循環 フロン循環シミュレーション 	 (左)モデル格子に沿った「東西」方向。(中央)「東西」に積単した「南九道際の流量の「南北」一密度分布。基本実験の場合。青は北上、赤は南下を表す。 (右)風応力による「南北」領集の支化。機軸の数値を風応力(気候値)に掛けて強化/弱化した実験の結果。Matsuda et al. (2015) 	199 - 0.1 - 0.15 - 0.05 -
 (2)海洋非静水圧モデルの高速化 (SMP・MPIハイブリッド並列の チューニング) -ルーブ融合による キャッシュ・チューニング -融合後の最外ループでの SMP並列化 	潮汐混合 (伊藤薰·何) 潮泊口班の中朝季中2		今年度: 高分解能・鉄循環 (気候学的季節変動場) シミュレーション
(3)鉄化学モデルの高速化 - ノード内ハイブリッドI並列化 - SMP並列チューニング (インライン展開と 強制SMP並列化)	A附分起源の内心型力が これまで('10-13年度): 一鉛直2次元での - 高分解能シミュレーション - 理想化実験とパラメタ走査 - 力学解析と理論化	マドノ子的不安定による混白は、熱塩循環/初員 内部波と渦の相互作用の高分解能シミュレーション(14年度	 個項に入さく影響する。 今年度: 様々な力学レジームにおける ・内部重力波と渦の相互 作用のシミュレーション
 (4)高分解能熱塩循環モデルの高速化チューニング ・ループ融合による ・キャッシュヒット率向上 ・SMP並列での 演算負荷均等化 	-3次元数値実験 - 力学解析 - 高分解能化 下層雲 (中村知裕·三寺	密度偏差。(左)水平断面。(右)3次元圆。 ¹² ¹² ¹² ¹² ¹² ¹² ¹² ¹²	・力学解析
- 境界部通信の重ね合わせ	オホーツク海では下層 オホーツク海では下層 これまで('10-13年度): ■季下層雪の	雲が頻繁に形成され、冬季は大量の降雪をもたらす 冬季下層雲の感度実験('14年度)	す。 今年度:
今年度: 高分解能・鉄循環モデル の高速化チューニング	 ◆ ティョ素の ・シミュレーションと 形成維持機構の解析 ・経年変動シミュレーション ・高分解能シミュレーション 冬季下層雲のシミュレーション 	40	1季節中の 他事例 シミュレー ション 色は3400hPa気温、矢即は

学際大規模情報基盤共同利用,共同研究拠点公募型共同研究 平成27年度採択課題

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

JHPCN

THE GRAND HALL (品川)

8. 10 **8**

学際大規模情報基盤共同利用・共同研究拠点第7回シンポジウム

7th Symposium