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Elucidation of microtubule nucleation using novel coarse-grained molecular dynamics simulation

(OYosuke Teshirogi and Tohru Terada
Dept. of Biotechnol, Grad. Sch. of Agri. and Life Sci., Univ. of Tokyo

Introduction

Microtubules are indispensable cytoskeletal polymers that underpin numerous cellular

Explicit integration

activities. Each microtubule is assembled from a/B-tubulin heterodimers, whose start mmend
exchangeable nucleotide-binding site carries either GTP or GDP. —
m Microtubule is formed in two sequential steps—nucleation followed by elongation. AL @ replace
i SimHec

Also, two mechanistically distinct nucleation modes have been identified.
m Because nucleation is thermodynamically unfavorable, it is the rate-limiting of
microtubule formation; yet it remains less explored experimentally and computationally.

m Here, we employ a newly developed coarse-grained molecular dynamics (MD) -
framework that we created to enable long-timescale, many-molecule simulations that . .
are inaccessible to conventional all-atom MD. Using this approach, we aim to achieve P - 8% -
a unified mechanistic picture of both spontaneous and template-based nucleation. %
m Elucidating the molecular details of microtubule nucleation will lay the groundwork for G_OOB_
future investigations into how macromolecular crowding, cellular context, and disease- — _ ___ oo
related mutations modulate nucleation efficiency. Fig. 1: Schematic figJ;‘;e;ﬁ[nhe CGRig MD simulati;?:lg;tfgtegy for microtubule.

Methods
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Fig. 2: Potential evaluation; (A) Tested complexes. (B)-(E) Potential energy distribution B @Y intermolecular nonbond o GeEs

by center-of-mass (COM) distance and root mean squared deviation (RMSD). (B) refers 3 forces from 12-mer
to 1BRS, (C) refers to 151Q, (D) refers to 2C0OL, and (E) refers to 3SGB. It also showed

the minimum energy point in the sampled structural ensemble.
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Fig. 3: Timestep evaluation for the explicit integration; (A) The Kullback-Leibler (KL) MD simulation for 8 tubulin dimers. They formed characteristic intermediate oligomers.
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