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Take-home message: 
  In long-time interaction, mechanism of SRS-driven 
  electron acceleration shifts from electron trapping  
  by plasma waves to stochastic acceleration.
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Fully ionized hydrogen plasma, w/ collision 
IL = 1x1015 ~ 1x1016 W/cm2,  λL = 1 um,  Lscl = 50 ~ 800 um, Init. Ti = 1 keV, Te = 5 keV 
dx = 0.05 um, dt = 0.17 fs, Nx = 4x104 ~ 105 grid, Nt = 6x105 time step, up to 100 ps (3x104 TL) 
70 particles/cell, ~ 500-2000 node-hour

We performed 1D PIC simulations to investigate dependences of  
 hot electrons on laser intensity IL and plasma density scale length Lscl.

After 35ps, mean energy Tf and energy flux Ff become constant 
 and their magnitudes strongly depend on laser intensity IL.

What mechanism constantly accelerate fast electrons >100 keV ?
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Time evolution of fast electrons’ energy flux Ff
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Time evolution of fast electrons’ mean energy Tf
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IL vs. Time-averaged Tf
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Laser intensity IL (W/cm2)
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To clarify acc. process, we tracked trajectories of FEs.
Trajectory of fast electrons
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After 35ps, stochastic acceleration process  
  generates fast electrons.
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Fit. by Diffusion eq.

D1t ≃ 1.6 × 103

D2t ≃ 104

PIs play important role for energy transfer  
 in sub-relativistic (1014-16 W/cm2) regime.
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HEs play important roles: 
 Shock enhancement in shock ignition 
 Target preheating by prepulse of relativistic-intensity lasers

SRS excites density perturbations and LALWs. 
LALWs trap and accelerate electrons around phase velocities.

Typical energy of HEs by SRS is ~ 10s keV. 
Suprathermal HEs (Fast electrons: FE) > 100 keV are observed in exp.

Langmuir wave: LW
ωe, ke

Laser light
Scattered light

ωL, kL

ωs, ks

SRS (stimulated Raman scattering)
Three-wave resonance process 
Decay of laser light to scattered light and LW

Frequency matching: ω0 = ω1 + ω2

k0 = k1 + k2wavenumber matching:

Excitation of 
Large-amplitude Langmuir wave (LALW)

Light speed(Ex, ke, ωe)
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vphase ∼ 0.1c

Electron trapping and acceleration by LALW

C. Rousseaux et al., Phys. Plasmas 4, 2589 (1992).  
E. L. Dewald et al., Rev. Sci. Instrum. 81, 10D398 (2010).

Set spatial grids and charged particles (super particle). 
Calculate motion of charged super particle from their eq. of motion. 
Calculate evolutions of electromagnetic field on grids from Maxwell eq. 

Particle-in-cell simulation
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dpj

dt
= Fj + Σk≠j fcoll( pj, εj, pk, εk)

EoM for super particles

Δt

Calculate  
charge density ρ 
current j

Calculate force FCalculate EoM

(x, v) → (ρ, j) ∂B/∂t = − c ( ∇ × E)
∂E/∂t = c ( ∇ × B) − 4π j

Calculate fields E, B
Maxwell eq.

Fj = qj (E +
pj

mecγj
× B)

Lorentz force

Calculation cycle in PIC code

In this study, we used PICLS, PIC simulation 
 code for laser-plasma interaction.

Y. Sentoku et al., Comput. Phys. 227, 6846 (2008)
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IL vs. Time-averaged Ff
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Analysis: Mode

Spatial distribution of 
density and electric field

Result
Energy spectrum of electron flux  

passing gate

Record electrons passing through the gate
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Setup of 1D PICLS sim.

Buckground Method

We performed Fourier analysis of electric field to investigate growth of SRS. → Electron-trapping by LALWs cannot occur after 35 ps. 
Other acceleration mechanisms are required!

SRS signals disaapear!

Analysis: Trajectory
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Ex-field is not advective, fluctuating. 
Fast electrons gain energy when they go through large negative field.

IL = 1x1016 W/cm2, Lscl = 100 um, w/o collision

TL : Laser period

Energy change of fast electrons

gain energylose energy

We investigated collective behavior: energy changes of 60,000 FEs during 200 TL.

Fast electrons diffusively change their kinetic energy.


