1 Introduction.

Reservoir computing, a  brain-inspired
machine-learning technique that employs a
data-driven dynamical system, is effective in
predicting time series and frequency spectra
in chaotic behaviors, including fluid flow and
global atmospheric dynamics [1, 2, 4, 5, 6].

We show that the effect of training data for
reservoir computing on the reconstruction of
chaotic dynamics. Our findings indicate that a
training time series comprising a few periodic
orbits of low periods can sufficiently reconstruct
the chaotic attractor. We also demonstrate that
biased training data do not negatively impact
reconstruction success. Our method’s ability to
reconstruct a physical measure is considerably
better than the so-called cycle expansion ap-
proach, which relies on weighted averaging. In
this study, using periodic orbits to generate bi-
ased small training data is significant to under-

standing how training data affect the construct

data-driven model.

2 Reservoir computation.
What’s Reservoir computation?

e a relatively high-dimentional fixed neural-
network composed of simple nonlinear dy-
namical systems

e determination of output layer

system and Kuramoto—

e For Lorenz

Sivashinsky system, inference [1, 5, 6]

2.1 Procedure of training.

(O 1st step (generating a reservoir vector)

r(t 4+ At)
= (1 — a)r(t) + atanh(Ar(t) + Wiyu(t) + £1)

A, W,,: sparse random matrix, whose maxi-
mal eigenvalue is controlled.

£: a scalar constant
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Figure 1: Schematic picture of a reservoir

computing (training phase)
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(O 2nd step (determination of output
layer)
We determine Wy, and W, S.t.

t<T  Wour(t+ At) +r(t) " W, r(t)

~ s(t + At).

W; . € RMXN ig a matrix.

W ous € RN s a tensor [7].

2.2 Procedure of inference.

Using the W§,, and W¢ ., we infer the time-

series S.

S(t) = Wi r(t) +r(t) Wy r(t)

r(t + At)

= (1 — a)r(t) + atanh(Ar(t) + Wins(t) + £1).
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Figure 2: Schematic picture of a reservoir

computing (prediction phase)

This reservoir system corresponds to the data-

driven model of u.

3 Results

We investigate the effect of biased training

data on modeling.
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The top panel shows training data in the re-

turn plots defined by the maximal value of the z

variable, and the bottom panel shows the corre-

sponding return plots created from the reservoir

model. Even if some periodic orbits that pass
through a certain region surrounded by the circle

are excluded from the training dataset, the reser-

voir model reconstructs the attractor. The re-

gions are surrounded by the circles: B1(37,39.2).
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Excluded from periodic orbits which pass

through the region surrounded by the circle
B4(38,46).
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