

Keywords: Mechanobiology;

Lipid membrane deformation;

EX24208: Self-organization of ovarian cancer organoids revealed by 3D image segmentation and phase-field model

Toshikaze Chiba¹, Kotaro Kawamura¹, Keita Yanagiya¹,

Yutaka Oya², Toshihiro Kawakatsu¹, Tatsuaki Tsuruyama¹, and Masayuki Imai¹.

¹Department of Physics, Tohoku University, Aoba, Sendai, Japan ²Department of Materials Science and Technology, Tokyo University of Science, Katsushika-Ku, Tokyo, Japan

Key Question: Can mechano-biology improve pathological diagnosis?

- How genetic mutations exert protein-mediated mechanical cues in tumorigenesis?
- We reproduced the morphology of ovarian cancer organoids using mechanical model.

Observation: Lumen volume analysis

Simulation: Estimation of model parameters

Conclusion: Yes, mechanical model can improve pathological diagnosis!

- We succeeded to characterize the mechanical cue of primary and metastatic cancer organoids.
- Our approach can be applied to a comparison among cancer lineage subtypes or among patients⁴.
- Mechanical model may not only corroborate the current diagnosis of cancer, but also uncover the indicator of cancer prognosis.