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Normal mode analysis for protein–protein 
complex

For a single protein chain, the above method of obtaining 
normal mode analysis is straightforward. However, to 
consider the interplay of intrinsic dynamics in a multi-chain 
assembly requires careful treatment of the normal mode 
calculation. In this section, we use the CBL-b and Ubiquitin 
(Ub) complex as an example system, as originally used in 
by Dasgupta et al. (Dasgupta et al. 2013, 2014b). (Fig. 1a).

Generally, for a dimer with chains A and B, there are 
rigid-body roto-translational motions between A and B. 
Here, A and B include NA and NB atoms, respectively, giv-
ing rise to a system of NA + NB = N atoms. The number of 
degrees of freedom for the A-B dimer is thus 3 N-6, where 
6 rigid-body motions of the dimer are subtracted. If treated 
individually, A and B chains include 3NA-6 and 3NB-6 
intrinsic vibrational motions, which sum to 3(NA + NB) 
– 12 = 3 N-12 degrees of freedom. Therefore, when apply-
ing NMA on AB dimer, we retrieve an extra six degrees of 
freedom in the system, which represent the relative rota-
tion and translation between A and B. We refer to these 
extra six degrees of freedom as external motions between 
A and B, which obscure the vibrational signatures present 

in the A-B dimer. Fortunately, there is a way to exclude 
these external motions by applying a suitable projection 
matrix to A and B, referred to as PA and PB, respectively 
(Field 2007; Dasgupta et al. 2014b).

Considering the covariance matrix obtained from usual 
NMA analysis of A-B, Ccomplex, which have the  follow-
ing blocks (Fig. 1c, for the example case of CBL-b and 
Ub dimer, where chain A is CBL-b and chain B is Ub), 
the CAA part (or CBB part) is a symmetric square matrix that 
corresponds to the coordinates of chain A (or B) along its 
rows and columns, while the CAB part is a non-symmetric 
rectangular block that corresponds to the coordinates of A 
along its rows and coordinates of B along its columns. Thus, 
when projecting CAA to a subspace without the six external 
degrees of freedom between A and B, we obtain,

and similarly, when projecting CAB to a subspace without the 
six external degrees of freedom between A and B, we obtain,

The matrix CAA,int includes motions of A within the dimer 
which are due to the intrinsic flexibility of A itself, and those 

(13a)CAA,int = PACAAPA
T

(13b)CAB,int = PACABPB
T

Fig. 1  a The dimeric system of CBL-b (Cb) and Ubiquitin (Ub) from 
the PDB ID 2OOB as an illustrative example. The alpha-helical and 
beta-strand secondary structures are numbered and annotated as “H” 
and “S,” respectively. b Intrinsic dynamic characterization of a AB 
heterodimer can be approached with explicit and implicit consid-
eration of partner. From the explicit treatment, we obtain self- and 
directly coupled motion of A and B. From the implicit treatment of 
the partner, we also obtain motions of A and B. c Correlation matrix 

obtained from the normal modes of AB heterodimer can be split into 
Ub and Cb, from which self-coupled motion can be obtained. The 
remaining rectangular part of the matrix, “CBL-b and Ub direct cou-
pled,” includes directly coupled motions. To obtain vibrational signa-
tures from self- and directly coupled submatrices, projection matrices, 
annotated with “P” and subscript corresponding to the component, are 
used
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Motivation
Protein-protein interactions are important building blocks for
understanding complex cellular processes
PPIs emerge as a complicated network of interactions as part of the
“interactome”
Targets for drug therapy, rational design of large macromolecular
assemblies
Regulation of PPI often involve modulation of intrinsic flexibility of
proteins

Elastic Network Models
Introduced by Tirion, ENMs are a
simple way to describe the intrinsic
flexibility of proteins. ENMs are well
suited for larger assemblies via
coarse-graining. Wide variety of
applications, including comparative
analysis of dynamics.

of proteins [47]. Despite all this variety, ENMs can be understood in
terms of a single unifying formalism, the details of which are as follows.

The ENMs model the protein as a network of Hookean springs that
connect all residues, which are typically represented by nodes located
at the centre of their Cα atom. Interactions between atoms are described
by the pair potential for a given configuration of a protein:
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where ri is the position of a residue i, in the configuration of the protein
r, the superscript 0 denotes the equilibrium conformation and kij is the
force constant for the spring connecting residues i and j. Here, kij is typ-
ically determined by a scalar function of distance between connected
nodes. Apart from the choice of granularity of the model, the function
for determining kij is the most important difference between different
ENMs. The potential energy of the entire network is the sum of this
pair potential over all pairs:
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whereN is the number of nodes in the network. Expanding this potential
as a Taylor series around r0 reveals the following form of the potential
for a configuration obtained by infinitesimal displacement from its
equilibrium configuration:
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withH as thematrix of partial second order derivatives of the potential.
With respect to Cartesian coordinates, this is a 3N × 3N matrix. The
elements of H can be specified in terms of 3 × 3 submatrices corre-
sponding to each pair of nodes:
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Since H is a symmetric matrix, the potential energy of a configura-
tion r can be written in terms of its eigendecomposition:
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where vm represents the normalised eigenvectors and λm the corre-
sponding eigenvalues ofH. These eigenvectors form an orthogonal basis
for the configurational space of the protein, so that they each provide
energetically independent contributions to the potential energy of r.
These independent modes of deformation are referred to as the normal
modes of the network, and they describemotion intrinsic to the protein
structure. Because of the coarseness of the model, eigenvalues and
hence energies are not interpreted exactly, but the separation between
eigenvalues are informative of the relative energetic cost of different
structural deformations. Since rigid-body rotations and translations
of the network are not restrained, the six modes corresponding to
rigid-body motion in Cartesian coordinates will have zero energy. The
modes describing rigid body displacements are referred to as trivial
modes.

Since normal mode analysis has a long tradition in chemistry for
analysing small vibrational molecules, the above formalism is often
presented as an eigendecomposition of the mass-weighted Hessian. In
that case, the elastic network is considered as a coupled harmonic
oscillator and the eigenvalues are the squared frequencies of vibration
along the corresponding modes. While the vibrational normal modes
are a perfectly valid decomposition of motion, it is worth stressing
that solvated proteins cannot in general be expected to be vibrational
along their lower energy modes [48] and thus, this requires cautious
interpretation of the oscillator model.

For equally normalised displacements, the quadratic dependence of
energy on the spatial extent of deformations causes large local deforma-
tions to be more energetically expensive than collective motions that
involve only small changes to each spring. Therefore low-energy modes
are expected to be collective. By a similar reasoning, collective motions
can be expected to have larger amplitudes, as local deformations are
constrained by the stronger local interactions. In fact, for a harmonic
potential, the displacements along low-energy normalmodes are exactly
the deviations alonghigh-variance principal components. The Boltzmann
distribution for the potential given in Eq. (3) is a multivariate Gaussian
distribution with a covariance matrix proportional to the inverse of H.
Because of the zero energy associatedwith rigidmovement of the protein,

Fig. 2. Elastic network models with different cut-offs. Illustrates the effect on uniform force constants for elastic network models. The models are constructed for the triple functional
domain protein (PDB ID: 1NTY [129]). Centre: The cartoon representation has Cα atoms highlighted as cyan spheres. Left: A model that connects all residues with Cα atoms within
0.8 nm of each other. Right: A model that connects all residues with Cα atoms within 1.5 nm of each other. For clarity, connections between buried residues are not shown if they are
more than 0.8 nm apart.
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Formalism
For N number of atoms, the total potential energy is defined as the 
sum of individual Hookean oscillators between all pairs of atoms (i

and j):
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where K is a constant, cij is the force constant, dij is the pairwise 
distance and dij is the pairwise equilibrium distance in the 

structure’s native conformation.

The partial derivatives of the potential constitute a 3N x 3N Hessian

Hessian can be diagonalized to retrieve eigenvalues ~ frequencies, 
eigenvectors ~ normal modes

For the purposes of reducing the size of the Hessian, coarse-
graining can be implemented e.g. C-alpha atoms only.

• Correlation matrix from the 
normal modes of AB 
heterodimer can be split into 
Ub and Cb parts.
• Remaining rectangular part of 

the matrix includes directly 
coupled motions.
• To obtain vibrational

signatures from self- and
directly coupled submatrices,
we use their projection
matricesDasgupta, B & Tiwari, S.P. 
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Examining the dynamics of Ubiquitin-CBL-b complex

PDB 2OOB
Ub-CBL-b coupled motions

FOR APPROVAL

 Biophysical Reviews

1 3

correlation values are more positive and contain less con-
trast between regions compared to the correlation matrices 
from the directly coupled normal modes (Fig. 6b). For 
both Cb (Fig. 5a) and Ub (Fig. 5b), only a few Cα atoms 
are positively correlated, while all other pairwise corre-
lations are moderately positive. Therefore, these results 
show fewer regions moving in sync in each subunit under 
bound conditions, and that only highly significant corre-
lations can be retrieved. Furthermore, the global similar-
ity between implicitly coupled and self-coupled normal 

modes is evident from Table 1, which show the Bhat-
tacharyya coefficients (BCs) between all-atom covariance 
matrices (Fuglebakk et al. 2012). The BCs indicate that 
directly coupled motions are distinct from self-coupled 
motions derived from explicit or implicit consideration 
of the binding partner. Between Cb and Ub, the BCs are 
higher in the case of Ub, which may be related to more 
rigid nature of Ubiquitin.

A very common measure, the root-mean-square fluc-
tuations (RMSF) of Cα-atoms, gives use a per-residue 
view of the intrinsic dynamics of Cb and Ub (Fig. 6). The 
expected dampening of the fluctuations in the self-coupled 
and implicitly coupled dynamics of Cb relative to directly 
coupled dynamics indicates that the implicit confirmation 
encodes the presence of the binding partner. This explains 
the success of studies that rely on the initial conformation 
of individual subunits when studying oligomers (e.g., Perica 
et al. (2014)). In the Cb and Ub example, the self-coupled 
dynamical fluctuation pattern embedded in RMSF is strongly 
correlated to implicitly coupled motion. The fluctuations of 
directly coupled normal modes of Cb is strongly influenced 
by interfacial residues, as those residues show higher RMSF. 

Fig. 6  a Root-mean-square fluctuations (RMSFs) averaged over all 
residues for Cb are compared for directly coupled, self-coupled, and 
implicitly coupled motion. In the Pearson correlation (inset) between 
RMSF values from different types of motion are also compared. b 
The ratio of interface to non-interface average atomic fluctuations 
(RMSFs) are compared for directly coupled, self-coupled, and implic-
itly coupled motion. c For Cb (in magenta) interacting with Ub (in 

cyan), the residues that show high fluctuations in self-coupled motion 
are shown. Glu947 of Cb has high RMSF values in all three types 
of motion and is positioned close to the binding interface. d Cb-Ub 
dimeric interface shown in the context of apo Cb (2OOA) oligomeric 
complex (as predicted by PISA) (top). At the bottom of the structure, 
Arg951 and Gln957 are shown oriented towards a hypothetical inter-
face between two Cb chains in a homo-tetramer

Table 1  Comparison of motion types using the Bhattacharyya coef-
ficient similarity measure

Cb
Directly coupled Self-coupled 0.3714
Directly coupled Implicitly coupled 0.4132
Self-coupled Implicitly coupled 0.9075
Ub
Directly coupled Self-coupled 0.3952
Directly coupled Implicitly coupled 0.4515
Self-coupled Implicitly coupled 0.9294

The residues that show high RMSF in the 
SC profile are indicated as red sticks. 
Glu957 of CBL-b is close to the binding 
interface.

Here, implicit modeling
was able to capture the
high fluctutation of
Arg951 and Glu957,
corresponding to residues
involved in the
hypothetical oligomer
model of Ub (above).

Root-mean-square fluctuations (RMSFs) averaged over
all residues for Cb are compared for directly coupled,
self-coupled, and implicitly coupled motion.

Modeling larger complexes, datasets – PyrR proteins

Fig. 5. 
PyrR intrinsic dynamics and oligomeric state. (A) All PyrR proteins have a similar intrinsic 
dynamics, but the three dimeric proteins are more similar than the tetramers. This difference 
is most pronounced when comparing the sets of dimeric and tetrameric interface residues 
with correlated dynamics specific for the dimeric VIOLETPyrR or the tetrameric 
AncORANGEPyrR. (B) Both structures are represented by only their Cα atoms, connected 
by green or yellow edges if at least one of the residues is involved either in the dimeric or 
the tetrameric interface and only if the pair of residues is moving in a concerted, correlated 
manner either only in the dimeric VIOLETPyrR (yellow edges) or only in the tetrameric 
AncORANGEPyrR (green edges). The residues corresponding to the eleven allosteric 
mutations (11/m3) are coloured in red. The sets of residues with correlation differences 
shown here have a cluster size of more than three, and fall within the correlation difference 
threshold of 0.1. (Both threshold values were chosen for the sake of clarity; please see 
Figures S16 and S17 for a more exhaustive analysis of the correlation differences).
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Correlation differences
The sets of residues with
correlation differences shown
here have a cluster size of more
than three (corresponding to
patches on the difference map)
and fall within the correlation
difference threshold of 0.1.
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Normal mode analysis for protein–protein 
complex

For a single protein chain, the above method of obtaining 
normal mode analysis is straightforward. However, to 
consider the interplay of intrinsic dynamics in a multi-chain 
assembly requires careful treatment of the normal mode 
calculation. In this section, we use the CBL-b and Ubiquitin 
(Ub) complex as an example system, as originally used in 
by Dasgupta et al. (Dasgupta et al. 2013, 2014b). (Fig. 1a).

Generally, for a dimer with chains A and B, there are 
rigid-body roto-translational motions between A and B. 
Here, A and B include NA and NB atoms, respectively, giv-
ing rise to a system of NA + NB = N atoms. The number of 
degrees of freedom for the A-B dimer is thus 3 N-6, where 
6 rigid-body motions of the dimer are subtracted. If treated 
individually, A and B chains include 3NA-6 and 3NB-6 
intrinsic vibrational motions, which sum to 3(NA + NB) 
– 12 = 3 N-12 degrees of freedom. Therefore, when apply-
ing NMA on AB dimer, we retrieve an extra six degrees of 
freedom in the system, which represent the relative rota-
tion and translation between A and B. We refer to these 
extra six degrees of freedom as external motions between 
A and B, which obscure the vibrational signatures present 

in the A-B dimer. Fortunately, there is a way to exclude 
these external motions by applying a suitable projection 
matrix to A and B, referred to as PA and PB, respectively 
(Field 2007; Dasgupta et al. 2014b).

Considering the covariance matrix obtained from usual 
NMA analysis of A-B, Ccomplex, which have the  follow-
ing blocks (Fig. 1c, for the example case of CBL-b and 
Ub dimer, where chain A is CBL-b and chain B is Ub), 
the CAA part (or CBB part) is a symmetric square matrix that 
corresponds to the coordinates of chain A (or B) along its 
rows and columns, while the CAB part is a non-symmetric 
rectangular block that corresponds to the coordinates of A 
along its rows and coordinates of B along its columns. Thus, 
when projecting CAA to a subspace without the six external 
degrees of freedom between A and B, we obtain,

and similarly, when projecting CAB to a subspace without the 
six external degrees of freedom between A and B, we obtain,

The matrix CAA,int includes motions of A within the dimer 
which are due to the intrinsic flexibility of A itself, and those 

(13a)CAA,int = PACAAPA
T

(13b)CAB,int = PACABPB
T

Fig. 1  a The dimeric system of CBL-b (Cb) and Ubiquitin (Ub) from 
the PDB ID 2OOB as an illustrative example. The alpha-helical and 
beta-strand secondary structures are numbered and annotated as “H” 
and “S,” respectively. b Intrinsic dynamic characterization of a AB 
heterodimer can be approached with explicit and implicit consid-
eration of partner. From the explicit treatment, we obtain self- and 
directly coupled motion of A and B. From the implicit treatment of 
the partner, we also obtain motions of A and B. c Correlation matrix 

obtained from the normal modes of AB heterodimer can be split into 
Ub and Cb, from which self-coupled motion can be obtained. The 
remaining rectangular part of the matrix, “CBL-b and Ub direct cou-
pled,” includes directly coupled motions. To obtain vibrational signa-
tures from self- and directly coupled submatrices, projection matrices, 
annotated with “P” and subscript corresponding to the component, are 
used

Analysis performed on dimer units only!

Perica et al, Science, 2014,, 346(6216): 1254346. 
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correlation values are more positive and contain less con-
trast between regions compared to the correlation matrices 
from the directly coupled normal modes (Fig. 6b). For 
both Cb (Fig. 5a) and Ub (Fig. 5b), only a few Cα atoms 
are positively correlated, while all other pairwise corre-
lations are moderately positive. Therefore, these results 
show fewer regions moving in sync in each subunit under 
bound conditions, and that only highly significant corre-
lations can be retrieved. Furthermore, the global similar-
ity between implicitly coupled and self-coupled normal 

modes is evident from Table 1, which show the Bhat-
tacharyya coefficients (BCs) between all-atom covariance 
matrices (Fuglebakk et al. 2012). The BCs indicate that 
directly coupled motions are distinct from self-coupled 
motions derived from explicit or implicit consideration 
of the binding partner. Between Cb and Ub, the BCs are 
higher in the case of Ub, which may be related to more 
rigid nature of Ubiquitin.

A very common measure, the root-mean-square fluc-
tuations (RMSF) of Cα-atoms, gives use a per-residue 
view of the intrinsic dynamics of Cb and Ub (Fig. 6). The 
expected dampening of the fluctuations in the self-coupled 
and implicitly coupled dynamics of Cb relative to directly 
coupled dynamics indicates that the implicit confirmation 
encodes the presence of the binding partner. This explains 
the success of studies that rely on the initial conformation 
of individual subunits when studying oligomers (e.g., Perica 
et al. (2014)). In the Cb and Ub example, the self-coupled 
dynamical fluctuation pattern embedded in RMSF is strongly 
correlated to implicitly coupled motion. The fluctuations of 
directly coupled normal modes of Cb is strongly influenced 
by interfacial residues, as those residues show higher RMSF. 

Fig. 6  a Root-mean-square fluctuations (RMSFs) averaged over all 
residues for Cb are compared for directly coupled, self-coupled, and 
implicitly coupled motion. In the Pearson correlation (inset) between 
RMSF values from different types of motion are also compared. b 
The ratio of interface to non-interface average atomic fluctuations 
(RMSFs) are compared for directly coupled, self-coupled, and implic-
itly coupled motion. c For Cb (in magenta) interacting with Ub (in 

cyan), the residues that show high fluctuations in self-coupled motion 
are shown. Glu947 of Cb has high RMSF values in all three types 
of motion and is positioned close to the binding interface. d Cb-Ub 
dimeric interface shown in the context of apo Cb (2OOA) oligomeric 
complex (as predicted by PISA) (top). At the bottom of the structure, 
Arg951 and Gln957 are shown oriented towards a hypothetical inter-
face between two Cb chains in a homo-tetramer

Table 1  Comparison of motion types using the Bhattacharyya coef-
ficient similarity measure

Cb
Directly coupled Self-coupled 0.3714
Directly coupled Implicitly coupled 0.4132
Self-coupled Implicitly coupled 0.9075
Ub
Directly coupled Self-coupled 0.3952
Directly coupled Implicitly coupled 0.4515
Self-coupled Implicitly coupled 0.9294
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correlation values are more positive and contain less con-
trast between regions compared to the correlation matrices 
from the directly coupled normal modes (Fig. 6b). For 
both Cb (Fig. 5a) and Ub (Fig. 5b), only a few Cα atoms 
are positively correlated, while all other pairwise corre-
lations are moderately positive. Therefore, these results 
show fewer regions moving in sync in each subunit under 
bound conditions, and that only highly significant corre-
lations can be retrieved. Furthermore, the global similar-
ity between implicitly coupled and self-coupled normal 

modes is evident from Table 1, which show the Bhat-
tacharyya coefficients (BCs) between all-atom covariance 
matrices (Fuglebakk et al. 2012). The BCs indicate that 
directly coupled motions are distinct from self-coupled 
motions derived from explicit or implicit consideration 
of the binding partner. Between Cb and Ub, the BCs are 
higher in the case of Ub, which may be related to more 
rigid nature of Ubiquitin.

A very common measure, the root-mean-square fluc-
tuations (RMSF) of Cα-atoms, gives use a per-residue 
view of the intrinsic dynamics of Cb and Ub (Fig. 6). The 
expected dampening of the fluctuations in the self-coupled 
and implicitly coupled dynamics of Cb relative to directly 
coupled dynamics indicates that the implicit confirmation 
encodes the presence of the binding partner. This explains 
the success of studies that rely on the initial conformation 
of individual subunits when studying oligomers (e.g., Perica 
et al. (2014)). In the Cb and Ub example, the self-coupled 
dynamical fluctuation pattern embedded in RMSF is strongly 
correlated to implicitly coupled motion. The fluctuations of 
directly coupled normal modes of Cb is strongly influenced 
by interfacial residues, as those residues show higher RMSF. 

Fig. 6  a Root-mean-square fluctuations (RMSFs) averaged over all 
residues for Cb are compared for directly coupled, self-coupled, and 
implicitly coupled motion. In the Pearson correlation (inset) between 
RMSF values from different types of motion are also compared. b 
The ratio of interface to non-interface average atomic fluctuations 
(RMSFs) are compared for directly coupled, self-coupled, and implic-
itly coupled motion. c For Cb (in magenta) interacting with Ub (in 

cyan), the residues that show high fluctuations in self-coupled motion 
are shown. Glu947 of Cb has high RMSF values in all three types 
of motion and is positioned close to the binding interface. d Cb-Ub 
dimeric interface shown in the context of apo Cb (2OOA) oligomeric 
complex (as predicted by PISA) (top). At the bottom of the structure, 
Arg951 and Gln957 are shown oriented towards a hypothetical inter-
face between two Cb chains in a homo-tetramer

Table 1  Comparison of motion types using the Bhattacharyya coef-
ficient similarity measure

Cb
Directly coupled Self-coupled 0.3714
Directly coupled Implicitly coupled 0.4132
Self-coupled Implicitly coupled 0.9075
Ub
Directly coupled Self-coupled 0.3952
Directly coupled Implicitly coupled 0.4515
Self-coupled Implicitly coupled 0.9294

RMSF based on partner dimer Y on X

Predicts the span of the tetrameric 
interface in more detail

Future plans
• Comparisons across self-coupled motions and direct

motions
• Validation against more detailed dynamics modelling
• Scaling up analysis to large structural dataset


