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Introduction

[Motivation]

e Optimizer selection
e Crucial for the successful training of DNNs.
 Influences training speed, stability, and generalization performance.
e Previous studies of are based on a IID assumption

e Out-of-distribution (OOD) generalization
 In real-world applications, it is often the case that the test data obey a distribution
different from the training data
 Distributional shift violates the typical IID assumption for training
e Comparing the OOD generalization performance among different optimizers is of
great interest in theory and in practice

[Contribution]

e Design and perform a comparison of the effect of optimizers on

OOD generalization on OOD benchmarks
e Evaluate 10 out-of-distribution generalization datasets
(including image classification and NLP)
e Wide range of hyperparameter configurations
(examining over 20,000 models)

e Demonstrate optimizer characteristic under distributional shift
e The adaptive optimizers provide more in-distribution (ID) overfitting and degrade
OOD performance more than the non-adaptive optimizers
e Non-adaptive optimizer outperformed adaptive optimizer in terms of best
OOD accuracy (8 out of 10 datasets)

e Observed correlation behaviors: ID vs OOD performance
e It can be categorized into typical patterns:linear return, diminishing return, and
increasing return

Limitation of IID Assumption

Empirical risk minimization (ERM) as known for standard training method could
achieve high ID performance by learning spurious correlations.
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Figure: Examples of invariant and spurious features.

Why Optimizer Selection?

e Learning method to mitigate the mentioned above is also studied
 Invariant risk minimization (IRM) [Arjovsky19] is also conducted in our study
« However, these methods have not provided sufficient OOD performance, and the
influence of the optimizer has not been taken into account so far
e Adam, due to its update formula, is likely to capture noise that is not an invariant
feature, although it converges quickly
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Optimizers Subjected in Our Analysis

We target five of the most popular and standard optimizers that have been used and
studied in recent years

[Non-Adaptive Optimizers]

In addtition to SGD, optimizers with momentum terms such as Momentum SGD, and
Nesterov momentum are also classified as non-adaptive optimizers

vt < YVi-1+ Mt Ve, £(0:-1), 01« 0:_1 — v,
where 6, is model parameter, 1, is learning rate, £(0) is loss %{_1 is stochastic gradient and y is momentum.
[Adaptive Optimizers]

Adam and RMSprop are adaptive optimizers and they can be written in the form of the
generic adaptive optimization method

Algorithm 1 Generic adaptive optimization method setup.

Require: {n;}]_;: step size, {¢:,1:}]_, function to calculate momentum and adaptive rate, 0:
initial parameter, £(0): objective function
1: fort =1toT do
2: gt < Vo fi(0:—1) (Calculate stochastic gradients w.r.t. objective at timestep t)
3:  wi «+ ¢¢(g1, ..., g¢) (Calculate momentum)
4: U < Y(ga, ..., g:) (Calculate adaptive learning rate)
5 0, < 0,_, — nywl; (Update parameters)
6: end for

Experimental Protocol
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Figure: OOD Datasets we evaluate in our study (Image taken from [Gulrajani21](Domainbed / left), [Xiao21](Background
Chellenge / right), and [Koh2021] (WILDS / bottom))

[ Model Selection Method and Evaluation Metrics]

e We follow the benchmark respectively [Gulrajani21],[Xiao21] and [Koh2021]
e For the image classification tasks

e The training domain is split into training and validation data

e OOD performance is evaluated in the test domain
e For the NLP tasks, the worst group is evaluated as the OOD performance

[ Hyperparameter Tuning]

e The exhaustiveness of the hyperparameter search is crucial for empirical
investigation of an optimizer's effect

» We basically follow [Choi19], which most exhaustively searched hyperparameters for
optimizer comparison and explored more hyperparameters than did previous
studies
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Optimizer Comparison in OOD Accuracy

We compared Momentum SGD as the best non-adaptive optimizer, with Adam as the
best adaptive optimizer

[Experimental results and implication]
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Figure: Relationship between the ID accuracy and the OOD accuracy in the ERM setting.
The x-axis of the plot is the in-distribution accuracy and the y-axis is the OOD accuracy. To make the trend more clear,
the in-distribution accuracy corresponding to the x-axis is divided into 10 bins, and the average performance of the
0OOD accuracy in each bin is shown on the y-axis.accuracy in each bin is shown on the y-axis.
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e In our area of interest, where a high in-distribution performance is achieved,
Momentum SGD outperforms Adam on 9 of the 10 datasets in the sense of
average OOD accuracy (Figure)

e This indicates that non adaptive optimizer is more advantageous than adaptive
optimizer in OOD, even though the performance is similar in the IID environment

Non-Adaptive Optimizer Adaptive Optimizer
Model 00D Dataset SGD Momentum Netsterov RMSProp Adam
4-Layer CNN ColoredMNIST 34.01% 34.23% 40.56% 89.30% 73.92%
RotatedMNIST 90.00% 95.41% 94.06% 96.27% 96.40 %
VLCS 99.43% 99.43% 99.29% 99.36% 99.36%
PACS 88.67% 89.55% 89.25% 88.81% 89.30%
ResNet50 OfficeHome 64.64% 65.01% 63.82% 62.91% 63.12%
Terralncognita 63.21% 62.41% 62.85% 62.31% 61.35%
DomainNet 58.38% 61.91% 62.24% 55.74% 58.48%
BackgroundChallenge - 80.09 % - - 77.90%
DistilBERT WILDSAmazon 52.00% 54.66 % 54.66% 53.33% 51.99%
WILDSCivilComment 51.66% 57.69% 60.07 % 45.39% 46.82%

Table: Comparison of the best OOD accuracy of ERM between five optimizers.
Except for a small set of problems, momentum SGD outperforms Adam. As a soundness check, we confirm that our Adam
results outperform all existing benchmark results using Adam.

« When comparing the performance of the best OOD accuracy, the non-adaptive
optimisers outperformed the adaptive optimizers in 8 out of 10 data sets (Table)

Correlation Behaviour (IID vs OOD)

Our results show that three typical types of behavior are observed in terms of the
correlation between in-distribution performance and OOD performance for different
datasets. These show how much performance in OOD can be expected if we increase the
in-distribution performance.
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Figure: Three-types of correlation Behaviour:
increasing return (PACS), linear return (DomainNet), and diminishing return (Amazon-WILDS).
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