Empirical Study on Optimizer Selection for Out-of-Distribution Generalization

Introduction

(Motivation)

Optimizer selection

- Crucial for the successful training of DNNs.
- Influences training speed, stability, and generalization performance.
- Previous studies of are based on a IID assumption

• Out-of-distribution (OOD) generalization

- In real-world applications, it is often the case that the test data obey a distribution different from the training data
- Distributional shift violates the typical IID assumption for training
- Comparing the OOD generalization performance among different optimizers is of great interest in theory and in practice

[Contribution]

- Design and perform a comparison of the effect of optimizers on **OOD** generalization on OOD benchmarks
 - Evaluate 10 out-of-distribution generalization datasets (including image classification and NLP)
 - Wide range of hyperparameter configurations (examining over 20,000 models)
- Demonstrate optimizer characteristic under distributional shift
 - The adaptive optimizers provide more in-distribution (ID) overfitting and degrade OOD performance more than the non-adaptive optimizers
 - Non-adaptive optimizer outperformed adaptive optimizer in terms of best OOD accuracy (8 out of 10 datasets)
- Observed correlation behaviors: ID vs OOD performance
 - It can be categorized into typical patterns:linear return, diminishing return, and increasing return

Limitation of IID Assumption

Empirical risk minimization (ERM) as known for standard training method could achieve high ID performance by learning spurious correlations.

Figure: Examples of invariant and spurious features.

Data from different distribution is predicted as Came

Why Optimizer Selection?

- Learning method to mitigate the mentioned above is also studied • Invariant risk minimization (IRM) [Arjovsky19] is also conducted in our study
- However, these methods have not provided sufficient OOD performance, and the influence of the optimizer has not been taken into account so far
- Adam, due to its update formula, is likely to capture noise that is not an invariant feature, although it converges quickly

Hiroki Naganuma^{*1,2}, Kartik Ahuja^{1,2}, Shiro Takagi[†], Tetsuya Motokawa⁴, Rio Yokota⁵, Kohta Ishikawa⁶, Ikuro Sato^{5,6}, Ioannis Mitliagkas^{1,2,3} *: naganuma.hiroki@mila.quebec †: Independent Researcher

Optimizers Subjected in Our Analysis

We target five of the most popular and standard optimizers that have been used and studied in recent years

(Non-Adaptive Optimizers)

In addition to SGD, optimizers with momentum terms such as Momentum SGD, and Nesterov momentum are also classified as non-adaptive optimizers

 $\boldsymbol{v}_t \leftarrow \gamma \boldsymbol{v}_{t-1} + \eta_t \tilde{\nabla}_{\boldsymbol{\theta}_{t-1}} \ell(\boldsymbol{\theta}_{t-1}), \ \boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \boldsymbol{v}_t$

where θ_t is model parameter, η_t is learning rate, $\ell(\theta)$ is loss $\tilde{\nabla}_{\theta_{t-1}}$ is stochastic gradient and γ is momentum.

[Adaptive Optimizers]

Adam and RMSprop are adaptive optimizers and they can be written in the form of the generic adaptive optimization method

Algorithm 1 Generic adaptive optimization method setup.

Require: $\{\eta_t\}_{t=1}^T$: step size, $\{\phi_t, \psi_t\}_{t=1}^T$ function to calculate momentum and adaptive rate, θ_0 : initial parameter, $\ell(\boldsymbol{\theta})$: objective function

for t = 1 to T do

 $g_t \leftarrow \tilde{\nabla}_{\theta} f_t(\theta_{t-1})$ (Calculate stochastic gradients w.r.t. objective at timestep t)

- $\boldsymbol{w}_t \leftarrow \phi_t(\boldsymbol{g}_1, ..., \boldsymbol{g}_t)$ (Calculate momentum)
- $l_t \leftarrow \psi_t(g_1, ..., g_t)$ (Calculate adaptive learning rate)
- $\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} \eta_t \boldsymbol{w}_t \boldsymbol{l}_t$ (Update parameters)
- 6: **end for**

Experimental Protocol

Figure: OOD Datasets we evaluate in our study (Image taken from [Gulrajani21](Domainbed / left), [Xiao21](Background Chellenge / right), and [Koh2021] (WILDS / bottom))

[Model Selection Method and Evaluation Metrics]

- We follow the benchmark respectively [Gulrajani21], [Xiao21] and [Koh2021]
- For the image classification tasks
 - The training domain is split into training and validation data
 - OOD performance is evaluated in the test domain
- For the NLP tasks, the worst group is evaluated as the OOD performance

[Hyperparameter Tuning]

- The exhaustiveness of the hyperparameter search is crucial for empirical investigation of an optimizer's effect
- We basically follow [Choi19], which most exhaustively searched hyperparameters for optimizer comparison and explored more hyperparameters than did previous studies

Optimizer Comparison in OOD Accuracy

We compared Momentum SGD as the best non-adaptive optimizer, with Adam as the best adaptive optimizer

(Experimental results and implication)

Figure: Relationship between the ID accuracy and the OOD accuracy in the ERM setting The x-axis of the plot is the in-distribution accuracy and the y-axis is the OOD accuracy. To make the trend more clear, the in-distribution accuracy corresponding to the x-axis is divided into 10 bins, and the **average performance of the OOD accuracy** in each bin is shown on the y-axis.accuracy in each bin is shown on the y-axis.

- In our area of interest, where a high in-distribution performance is achieved, Momentum SGD outperforms Adam on 9 of the 10 datasets in the sense of average OOD accuracy (Figure)
- This indicates that non adaptive optimizer is more advantageous than adaptive optimizer in OOD, even though the performance is similar in the IID environment

Model	OOD Dataset	Non-Adaptive Optimizer			Adaptive Optimizer	
		SGD	Momentum	Netsterov	RMSProp	Adam
4-Layer CNN	ColoredMNIST	34.01%	34.23%	40.56%	89.30%	73.92%
	RotatedMNIST	90.00%	95.41%	94.06%	96.27%	96.40%
ResNet50	VLCS	99.43%	99.43%	99.29%	99.36%	99.36%
	PACS	88.67%	89.55%	89.25%	88.81%	89.30%
	OfficeHome	64.64%	65.01%	63.82%	62.91%	63.12%
	TerraIncognita	63.21%	62.41%	62.85%	62.31%	61.35%
	DomainNet	58.38%	61.91%	62.24%	55.74%	58.48%
	BackgroundChallenge	-	80.09%	-	-	77.90%
DistilBERT	WILDSAmazon	52.00%	54.66%	54.66%	53.33%	51.99%
	WILDSCivilComment	51.66%	57.69%	60.07%	45.39%	46.82%

Table: Comparison of the best OOD accuracy of ERM between five optimizers. Except for a small set of problems, momentum SGD outperforms Adam. As a soundness check, we confirm that our Adam results outperform all existing benchmark results using Adam.

• When comparing the performance of the best OOD accuracy, the non-adaptive optimisers outperformed the adaptive optimizers in 8 out of 10 data sets (Table)

Correlation Behaviour (IID vs OOD)

Our results show that three typical types of behavior are observed in terms of the correlation between in-distribution performance and OOD performance for different datasets. These show how much performance in OOD can be expected if we increase the in-distribution performance.

Figure: Three-types of correlation Behaviour:

increasing return (PACS), linear return (DomainNet), and diminishing return (Amazon-WILDS).

References

[Arjovsky19] Martin Arjovsky et al. "Invariant risk minimization". In: arXiv preprint arXiv:1907.02893 (2019) [Gulrajani21] Ishaan Gulrajani and David Lopez-Paz. "In Search of Lost Domain Generalization". In: International Conference on Learning Representations. 2021

[Xiao21] Kai Yuanqing Xiao et al. "Noise or Signal: The Role of Image Backgrounds in Object Recognition". In: International Conference on Learning Representations. 2021.

[Koh2021] Pang Wei Koh et al. "Wilds: A benchmark of in-the-wild distribution shifts". In: Interna-tional *Conference on Machine Learning*. PMLR. 2021, pp. 5637–5664.

