JHPCN Exploratory Theme ID: EX23305 Advancing the Frontier of (データ駆動数値流体力学の創成) Data-Driven Computational Fluid Dynamics

PI: Hisaichi SHIBATA, Ph. D., @ The University of Tokyo Hospital

1. Background			2. Objective	
Dimensionless Navier-Stokes Ed	governs	Flows e.g., Air around an Airplane	<i>Low</i> Reynolds Number Flows	<i>Inviscid</i> Flows
			\sim	/ Y

3. Methods

4. Results

To model the prior and enable the sampling $x_H \sim p(x_H | x_{\infty}, x_L)$, I adopt a conditional diffusion model (deep generative model).

I trained a conditional diffusion model with the primitive variables of flow fields for the compressible Taylor-Green vortex where the Reynolds number is

less than or equivalent to 800, in addition to the inviscid flow field.

Fig. 1 Spatial distribution of enstrophy in a Taylor-Green vortex at Re=1,600 (t=50).

Fig. 2 Time evolution of total kinetic energy (TKE) in a Taylor-Green vortex.

5. Discussion and Future Works

- I aim to extending this work to general problems (i.e., diverse

boundary conditions, initial conditions, and computational domain) with a single prior.

- I aim to reducing numerical diffusion when simulating inviscid flows by adopting e.g., KEEP schemes.

This research is partially supported by Initiative on Promotion of Supercomputing for Young or Women Researchers, Information Technology Center, The University of Tokyo.

6. Conclusion

I have successfully confirmed the proposed method, which can predict and generate higer Reynolds number flows from lower Reynolds number flows, the inviscid flow, and the prior.