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A density functional theory study on NO-H2O co-
adsorption on Cu(111)

II. Computational details

I. Introduction
• The complex formation of nitric oxide 

(NO) with some common gases in 
three-way catalyst environment (e.g. 
NH3, H2O. etc.) is important for the 
selectivity of the NO reduction reaction.


• Recently, the formation of NO-H2O 
complex on Cu(111) is observed 
experimentally [1]. 


• It found that NO-H2O interaction is 
stronger than NO-NO and H2O-H2O 
interactions, leading to the formation of 
a mixed NO-H2O complex on Cu(111) 
[1]


• To shed light on the experimental 
observation of NO-H2O/Cu(111), we 
studied the adsorption of small mNO-
nH2O complexes (n = 1 – 4, m = 1 – 4)  
on Cu(111) [2]

• DFT with STATE (Simulation Tool for 
Atom TEchnology) package. [3]


• Plane-wave basis set with cut-off 
energies of 36 and 400 Ry for wave 
functions and augmented charge 
density.


• K-points: 5 x 5 x 1

• Eight-layer slab model for Cu(111) with 

a vacuum thickness of 16 Å 

Eads(nNO-mH2O) = Etot
nNO-mH2O/Cu − [Etot

Cu + nEtot
NO + mEtot

H2O
]

Eb(nNO-mH2O) = Etot
nNO-mH2O/Cu − nEtot

NO/Cu − mEtot
H2O/Cu + (n + m − 1)Etot

Cu,

III. Results and discussion

Eb = 0 -0.12 0.00 -0.28 -1.37 eV

NO and H2O tend to form 
small clusters upon 

individual adsorption

A. NO and H2O clusters on Cu(111)

B. NO-H2O co-adsorption on Cu(111)
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• NO-H2O complexes are more 
stable than (NO)3 and (H2O)6. 

• H-bond saturation leads to a 
more stable mixed complex 
structure even though their 
binding strength is weaker
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C. Intermolecular interaction 
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NO monomer

NO in NO-H2O

Eb/eV ∆q(NO)/e ∆q(H2O)/e
NO monomer 0 -0.60
H2O monomer 0 0.02

NO-H2O -0.222 -0.77 0.02

∆q : effective Bader charge 
,  

Where  and  are total valance and Baderelectrons 
Δq = Z − q

Z q
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Schematic for NO-H2O interaction

H-bond (HO-H⋅⋅⋅ON)  
Mainly electrostatic attraction (major) 

-0.77e

Attraction by 
induced e- transfer 

(minor)

e-ΔρNO-H2O = ρNO-H2O/Cu − ρNO/Cu − ρH2O/Cu + ρCu

H-bond (electrostatic attraction between H2O and 
negatively charged NO) mainly stabilizes the co-

adsorption and enhances the back donation to 2π* orbitals

IV. Conclusions
• We confirm the NO-H2O interaction is 

stronger than NO-NO and H2O-H2O 
interaction.


• NO-H2O interaction mainly arises from 
direct hydrogen bondings between H2O 
and negatively charged NO by back-
donation process.
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