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|. Introduction

 The complex formation of nitric oxide
(NO) with some common gases in
three-way catalyst environment (e.g.
NHs, H20. etc.) is important for the
selectivity of the NO reduction reaction.

 Recently, the formation of NO-H20
complex on Cu(i111) is observed
experimentally [1].

[t found that NO-H20 interaction is
stronger than NO-NO and H20-H20
interactions, leading to the formation of
a mixed NO-H20 complex on Cu(111)
[1]

* To shed light on the experimental
observation of NO-H20/Cu(111), we
studied the adsorption of small mNO-
nH20 complexes (n =1-4, m=1 - 4)
on Cu(111) [2]
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[l. Computational details

 DFT with STATE (Simulation Tool for
Atom TEchnology) package. [3]

 Plane-wave basis set with cut-off
energies of 36 and 400 Ry for wave
functions and augmented charge
density.

 K-points: 5 x5 x 1

» Eight-layer slab model for Cu(111) with
a vacuum thickness of 16 A

Eads(nNO'mHzo) — EtOt

Ey(nNO-mH,0) = E X6 m.0/cu — "Exoica — MER oica + (n+m — 1)

[3] Y. Morikawa, Phys. Rev. B 51, 802, (1995)

IV. Conclusions

 We confirm the NO-H20 interaction is
stronger than NO-NO and H20-H20
interaction.

* NO-H20 interaction mainly arises from
direct hydrogen bondings between H20
and negatively charged NO by back-
donation process.
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lll. Results and discussion

A. NO and H20 clusters on Cu(111)

NO and H20 tend to form
small clusters upon
individual adsorption
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B. NO-H20 co-adsorption on Cu(111)
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e NO-H20 complexes are more
stable than (NO)s and (H20)s.

e H-bond saturation leads to a
more stable mixed complex
structure even though their
binding strength is weaker
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Aq : effective Bader charge
Ag=7-q,
Where Z and g are total valance and Baderelectrons

PDOS
o
o

H-bond (HO-H---ON)
Mainly electrostatic attraction (major)
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e- by back
donation
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APNO-,0 = PNO-H,0/Cu ~ PNO/Cu ~ PH,0/Cu T Pcu

H-bond (electrostatic attraction between H20 and
negatively charged NO) mainly stabilizes the co-
adsorption and enhances the back donation to 2x* orbitals
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Schematic for NO-H-20 interaction
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