EX18305 (ERASIERER L 47— HBERE WL ot

10th Symposium

| Research Center for Interdisciplinary Large-scale Information Infrastructures

EE HY ZILFHEAT i1 EFHFHE 52—

JAXA AE MPS 577045 L P-Flow IZ& A KR IERIREENT

I. MPS method and our in-house code; P-Flow

Ill. Porting and optimization strategy

Moving Particle Semi-implicit (MPS) method

MPS method is a sort of particle methods
used for computation fluid dynamics. It is . l
originally developed for simulating fluid

dynamics such as fragmentation of incom-
pressible fluid. Target fluid or objects are
MPS simulation:
A collapse of water column

divided into particles and each particle in-
teracts with neighbor-particles. Search of
neighbor-particles is a main bottleneck of
MPS method. We’re researching and deve-
loping in-house program.

Complexity of data structure and memory access pattern

Our in-house MPS code;
P-Flow adopts complex
data structure for
scalability and
extensibility. It is written —
bucket I\‘\'\/ﬁ@(hutkﬂ,nﬂmr‘?‘): pc }\ type(bucket_wall) :: wall L type(bucket_aero) :: aero(8)
X

in Fortran and utilizes < 7S N
N - AN VN a4 88
\

multiple de-rived types. | et partce
fp uudist

48 318 248
btlist arrayl int num,l zyremw 1), dim(:), allocatable : array | int, dim(2,3) :: minmax

%
e 4B
hkmstl’mt; ib I int:: 3
rank <

88 ___———— 168 2568

int :: near

int : face_id

tation (Id_lc + num)

For bucket management (AoS

For physical values (SoA)

Il. Search for neighbour-particle

MPS performs search for neighbor-particle
multiple times in each time step (e.g. density
calculation). Each particle drifts as time-step
progress and neighbor-particle changes.

0 _ 0_,0
= wlr? =)
A
Equation of density

Search for neighbour-particle with bucket

The following 4-nested loop step is used. Traversed bucket

1. Choose a target bucket Zﬁ\\,G{\ @ ©
2. Pickup a target particle (red) in the bucket ALl \ 3
3. Traverse 3*3*3 adjacent buckets (in no 5 !
particular order) L @ \@ 16
4. Search particles in a bucket @
4-1. Calculate distance and weight &)
between the target particle EDEE S

Chosep bucket

4-2. Accumulate weighted physical value
O N-th particle D : Adjacent buckets
to a target particle (in no particular order)

v' Maximum number of particles in a bucket ch for neighbor-particle

Memory access pattern and Characteristics

v Indefinite loop: number of
particles in a bucket is
uncertain

v" Vectorization: Each target
particle accesses different
bucket and particle loop-.

v Cache: Not easy to utilize

loop-1. Choose bucket

: Bucket structure
array

N\
loop-2. Particles in thexchosen bucket

m ..@@. Particle index

array

.

59559208 309J1p-U|

: Bucket structure

% array
cache since adjacent % % Ioa-li\ Partmlesl |}1 the traversed bucket
particles changes time by g 2 [a o) @gng : Particle position
time § X \'\\ o

v" Parallelism: Thousands of in- g loop-4-1,2. e hysical quantity
E] _-‘ ‘ ‘ ‘ ‘ [‘ ‘ ‘@‘ ‘ ‘ : Particle quantity

flight data requests can hide
memory access latency

array

In order to make maintenance easy and keep the structure of original
code, OpenACC and OpenMP are used for GPU and CPU, respectively.
OpenACC works well on the complex data structure.

P100: Bucket per thread block, particles per CUDA thread

Each target bucket (Loop1) is assigned to thread
block. Each particle in the same bucket (Loop2) is
assigned to CUDA thread. Loop 3 and 4 are
processed sequentially by each CUDA thread.

Memory access of threads in bucket becomes
the same since each particle in the same bucket
accesses the same particle in loop 3 and 4. But not
coalesced and low bandwidth utilization. Utilization
of CUDA thread is low since the # of particle in
bucket often becomes less than 32.

Particles in the
same bucket

¥ pue g dais

32 threads / block

KNL and Skylake: Bucket per logical thread
Each target bucket (Loop1) is assigned to logical @ Bucket

thread. Loop 2~4 are processed sequentially by
each thread. OpenMP’s “schedule (dynamic)”
clause is used for load balancing since the # of
particles in bucket is different.

Memory access of threads is different and cache
utilization is very low. Vectorization is not done as
well. Different algorithm (e.g. Verlet list in
molecular dynamics) is required to solve these
problems. KNL and Skylake achieved higher
performance when Hyper-Threading is enabled.

Bucket / thread

IV. Performance on P100, KNL and Skylake

ta Analyzing and Information Systems

TFLOPS GHz Number of Threads Gbps
480

Single-KNL-7210 1.3(1.5) 64 * 4HT = 256
Two-Xeon Gold 6150 N/A 2.7 (3.7) 18 * 2HT * 2CPUs = 72 256
Two-P100 (PCle) 9.3 1.1(1.3) 3,584 * 2GPUs = 7,168 732
Two-P100 (NVlink) 10.6 1.3 (1.4) 3,584 * 2GPUs = 7,168 732
Data sets

* Collapse of water column (40[cm] X 40[cm] X 8[cm])
* # of particles: 224,910, #of buckets: 70x70x14
* Average time of 200 time step of particle density computation
Compilers and configurations
* P100: PGI Compiler 17.7 w/ “-ta=nvidia:cc60,cuda8.0,fastmath”
* KNL7210 (Flat+Quadrant, 4HT) and Xeon Gold 6150 (2HT): Intel Compiler 2017 w/
“—gopenmp -03 -xCOMMON-AVX512 -fp-model fast=2"

52.1
50 - Projected number of two-KNL 1
(104.2[ms] for single-KNL) J
g0 35.1
g ‘ P100 is x4.5 faster than Skylake
= 30
g
@ (Performance is different when host
9 20 - L processor is different
<
a
10
0 -

T T
Single KNL-7210 Xeon Gold 6150 Gold 6150+P100 POWER8+P100 E5-2695v4+P100
PCle NVLink NVLink

AR smanaEssga R A AFRLA B10ES L RSY 4

20184 7H12H,13H

THE GRAND HALL (S:J11)

