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Single prec.
[TFLOPS]

Clock (Bost)
[GHz] Number of Threads

Mem BW
[Gbps] 

Single-KNL-7210 5.3 1.3 (1.5) 64 * 4HT = 256 480

Two-Xeon Gold 6150 N/A 2.7 (3.7) 18 * 2HT * 2CPUs = 72 256

Two-P100 (PCIe)   9.3 1.1 (1.3) 3,584 * 2GPUs = 7,168 732

Two-P100 (NVlink) 10.6 1.3 (1.4) 3,584 * 2GPUs = 7,168 732

I. MPS method and our in-house code; P-Flow III. Porting and optimization strategy

Complexity of data structure and memory access pattern

P100: Bucket per thread block, particles per CUDA thread

KNL and Skylake: Bucket per logical thread

MPS method is a sort of particle methods 
used for computation fluid dynamics. It is 
originally developed for simulating fluid 
dynamics such as fragmentation of incom-
pressible fluid. Target fluid or objects are 
divided into particles and each particle in-
teracts with neighbor-particles. Search of 
neighbor-particles is a main bottleneck of 
MPS method. We’re researching and deve-
loping in-house program.

Moving Particle Semi-implicit (MPS) method

Search for neighbour-particle with bucket

MPS performs search for neighbor-particle 
multiple times in each time step (e.g. density 
calculation). Each particle drifts as time-step 
progress and neighbor-particle changes.

Equation of density

MPS simulation: 
A collapse of water column

For physical values (SoA)

fp, allocatable :: p

fp, allocatable :: c

fp, allocatable :: x

fp, allocatable :: nden

Our in-house MPS code; 
P-Flow adopts complex 
data structure for 
scalability and 
extensibility. It is written 
in Fortran and utilizes 
multiple de-rived types.

In order to make maintenance easy and keep the structure of original 
code, OpenACC and OpenMP are used for GPU and CPU, respectively. 
OpenACC works well on the complex data structure.

The following 4-nested loop step is used.
1. Choose a target bucket
2. Pickup a target particle (red) in the bucket
3. Traverse 3*3*3 adjacent buckets (in no 
particular order)
4. Search particles in a bucket
4-1. Calculate distance and weight
between the target particle
4-2.  Accumulate weighted physical value
to a target particle (in no particular order)
 Maximum number of particles in a bucket is 33

For bucket management (AoS)

int :: numbktlist_array type(bktlist), dim(:), allocatable :: array int, dim(2,3) :: minmax

4B 312B 24B

int :: ibbktlist
int :: 
rank

int, dim(2,3) :: next type(bucket) :: dat

4B 4B 280B24B

type(bucket_particles) :: pc type(bucket_wall) :: wallbucket

8B 16B

type(bucket_aero) :: aero(8)

256B

int :: num int :: Id_lcbucket_particle

4B 4B

fp :: cg(3) fp :: rhogbucket_aero

24B 8B

int :: near int :: face_idbucket_wall

4B 4B

fp ::dist

8B

index calculation (ld_lc + num)

 Indefinite loop: number of 
particles in a bucket is 
uncertain

 Vectorization: Each target 
particle accesses different 
bucket and particle

 Cache: Not easy to utilize 
cache since adjacent 
particles changes time by 
time

 Parallelism: Thousands of in-
flight data requests can hide 
memory access latency

II. Search for neighbour-particle

IV. Performance on P100, KNL and Skylake

Data sets
• Collapse of water column (40[cm]×40[cm]×8[cm])
• # of particles: 224,910, #of buckets: 70x70x14
• Average time of 200 time step of particle density computation

Compilers and configurations
• P100: PGI Compiler 17.7  w/ “-ta=nvidia:cc60,cuda8.0,fastmath”
• KNL7210 (Flat+Quadrant, 4HT) and Xeon Gold 6150 (2HT): Intel Compiler 2017 w/ 

“ –qopenmp -O3 -xCOMMON-AVX512 -fp-model fast=2”
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Each target bucket (Loop1) is assigned to thread 
block. Each particle in the same bucket (Loop2) is 
assigned to CUDA thread. Loop 3 and 4 are 
processed sequentially by each CUDA thread.

Memory access of threads in bucket becomes 
the same since each particle in the same bucket 
accesses the same particle in loop 3 and 4. But not 
coalesced and low bandwidth utilization. Utilization 
of CUDA thread is low since the # of particle in 
bucket often becomes less than 32.

Particles in the
same bucket
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Particles in the
same bucket
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Particles in the
same bucket

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

…

Particles in the
same bucket

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

…

32 threads / block
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Memory access pattern and Characteristics

Each target bucket (Loop1) is assigned to logical 
thread. Loop 2~4 are processed sequentially by 
each thread. OpenMP’s “schedule (dynamic)” 
clause is used for load balancing since the # of 
particles in bucket is different.

Memory access of threads is different and cache 
utilization is very low. Vectorization is not done as 
well. Different algorithm (e.g. Verlet list in 
molecular dynamics) is required to solve these 
problems. KNL and Skylake achieved higher 
performance when Hyper-Threading is enabled.

Performance is different when host 
processor is different

P100 is x4.5 faster than Skylake

Bucket
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Bucket / thread

Search for neighbor-particle
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N : N-th particle : Adjacent buckets

loop-3. Traversed adjacent buckets

loop-4. Particles in the traversed bucket

1 2 3 1110

loop-4-1,2. Calculate physical quantity

12

loop-2. Particles in the chosen bucket

12 13

loop-1. Choose bucket

: Bucket structure
array

: Particle index
array

: Bucket structure
array

: Particle position
array

: Particle quantity
array
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