学際大規模情報基盤共同利用·共同研究拠点 萌芽型共同研究 採択課題

EX17703 (大阪大学サイバーメディアセンター推薦)

Joint Usage / Research Center for Interdisciplinary Large-scale Information Infrastructures

課題代表者氏名(所属) 樋口公紀(九州大学 理学府地球惑星科学専攻)

研究課題名 大規模シミュレーションで見る宇宙初期から現在に至る星形成史の変遷

- INTRODUCTION

CMFとIMFの関係

-> IMF/CMF = 0.3 - 0.5

(Andre et al. 2010)

<u>現在、天の川銀河</u>

原始星アウトフローの観測例多数 -> アウトフローの星形成への影響 大(理論研究)

-> 50% - 70%の分子雲コアガスを 外部に輸送可能?

<u>現在、天の川銀河以外</u> アウトフローの観測例なし

- MODEL & NUMERICAL METHOD

表1の28通りのBonner-Ebert sphereを設定し、3次元Non-ideal MHD Nested grid codeを用いてシミ ュレーションを行った。 ガス雲から原始星形成(n ~ 10¹⁶ cm⁻³)まで計算を行った。

Model	C_{ζ}	Z/Z_{sun}	μ	ω	$B_0(\mu G)$	$M_{ m cl}(M_\odot)$	$T_{\rm cl}({\rm K})$	$r_{\rm cl}({\rm AU})$	$c_s (\mathrm{km \ s^{-1}})$
I0ZPM3		0			34.1	1.08×10^{4}	198	4.91×10^{5}	1.49
I0Z5M3		10^{-5}			33.8	1.05×10^{4}	194	4.87×10^{5}	1.48
I0Z4M3		10-4			31.9	8.75×10^{3}	172	4.59×10^{5}	1.39
I0Z3M3	0	10^{-3}	3	0.1	24.6	3.98×10^{3}	103	3.52×10^{5}	1.07
I0Z2M3		10^{-2}			9.83	2.27×10^{2}	16.4	1.33×10^{5}	0.42
I0Z1M3		10^{-1}			10.3	1.26×10^{2}	18.1	9.67×10^4	0.36
I0Z0M3		1			5.76	15.2	5.65	4.49×10^{4}	0.19
I001ZPM3		0			28.4	6.20×10^{3}	140	4.09×10^{5}	1.24
I001Z5M3		10^{-5}			25.1	6.03×10^{3}	136	4.05×10^{5}	1.23
I001Z4M3		10^{-4}			26.2	4.88×10^{3}	117	3.77×10^{5}	1.15
I001Z3M3	0.01	10^{-3}	3	0.1	20.0	2.15×10^{3}	68.0	2.87×10^{5}	0.87
I001Z2M3		10^{-2}			9.85	2.30×10^{2}	16.5	1.34×10^{5}	0.42
I001Z1M3		10^{-1}			10.4	1.28×10^{2}	18.2	9.72×10^{4}	0.37
I001Z0M3		1			5.76	15.2	5.64	4.49×10^{4}	0.19
I1ZPM3		0			12.1	4.79×10^{2}	24.9	1.74×10^{5}	0.53
I1Z5M3		10^{-5}			12.1	4.82×10^{2}	25.1	1.74×10^{5}	0.53
I1Z4M3		10^{-4}			12.4	5.09×10^{2}	26.0	1.77×10^{5}	0.54
I1Z3M3	1	10^{-3}	3	0.1	12.7	5.43×10^{2}	27.3	1.81×10^{5}	0.55
I1Z2M3		10^{-2}			12.1	4.39×10^{2}	25.0	1.66×10^{5}	0.52
I1Z1M3		10^{-1}			10.9	1.58×10^{2}	20.1	1.06×10^{5}	0.39
I1Z0M3		1			6.11	18.0	6.34	4.75×10^{4}	0.20
I10ZPM3		0			13.5	6.56×10^{2}	31.0	1.93×10^{5}	0.59
I10Z5M3		10^{-5}			13.6	6.64×10^{2}	31.2	1.94×10^{5}	0.59
I10Z4M3		10 ⁻⁴			14.0	7.25×10^2	33.1	1.99×10^{5}	0.61
I10Z3M3	10	10^{-3}	3	0.1	15.3	9.39×10^{2}	39.6	2.17×10^{5}	0.66
I10Z2M3		10^{-2}			15.3	8.67×10^{2}	39.6	2.09×10^{5}	0.65
I10Z1M3		10^{-1}			12.6	2.74×10^2	26.8	1.29×10^{5}	0.46
I10Z0M3		1			8.03	40.1	11.0	6.24×10^{4}	0.26

Non-ideal MHD equations $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$ $\rho \frac{\partial v}{\partial t} + \rho (v \cdot \nabla) v = -\nabla P - \frac{1}{4\pi} B \times (\nabla \times B) - \rho \nabla \phi$ $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left[v \times \mathbf{B} + \frac{\eta_{\text{AD}}}{|\mathbf{B}|^2} [(\nabla \times \mathbf{B}) \times \mathbf{B}] \times \mathbf{B} - \eta_{\text{OD}} \nabla \times \mathbf{B} \right]$ $\nabla^2 \phi = 4\pi G \rho$ $P = P(\rho)$ ※4 ※4 化学進化、熱進化は1 zone計算をしたものを用いる

表1の左から順にイオン化パラメータ^{※1}、金属量、Mass-to-Flux Ratios^{※2}、回転パラメータ^{※3}、磁場 強度、ガス雲の質量、温度、半径、音速。 ※1 イオン化パラメータはガス雲のイオン化度を修正するパ

ペパイオンにパノメータはカス雲のイオンに度を修正するハ ラメータ。今回、宇宙線と放射性元素の崩壊によるイオン化 を考慮した。C_tが0の場合、イオン化源がない始源的環境に 対応し、C_tが0.01の場合、天の川銀河環境のイオン化度の 0.01倍に対応し、C_tが1の場合、天の川銀河の値に対応し、

C_zが10の場合、スターバースト銀河に対応する。

※2 Mass-to-Flux Ratiosの定義は以下。

$$\mu \equiv \left(\frac{M/\Phi}{(M/\Phi)_{cri}}\right) \qquad (M/\Phi)_{cri} = (2\pi G^{1/2})^{-1}$$

※3回転パラメータωの定義は以下。

$$\omega \equiv \Omega_0 t_{\rm ff}$$

 Ω_0 は角速度、 $t_{\rm ff}$ は自由落下時間である

- RESULTS

28通りの星形成過程でのアウトフローの駆動の有無(図2)とそれらのアウトフローのもつ運動 量(図3)を示した。

<u>図2.28通りの星形成過程にお</u> けるアウトフローの駆動の有無

それぞれのパネルは、アウトフローが駆動したモデルはその 時点の、アウトフローが駆動しなかったモデルはシミュレーション終了時のx-z平面でのスナップショットである。カラーコントアは数密度、白線内はアウトフロー領域を示す。高密度でアウトフロー駆動(赤枠)、低密度でア

DISCUSSION & CONCLUSIONS

- ・アウトフロー駆動の有無から、星形成環境が異なれば、星形成過程が変化することを示唆。
- ・低密度領域で駆動されるアウトフローの存在(thermal pressureの急激な増加によって一時的に収縮が止まったために駆動)
- -> 大きな運動量を持っており、星形成過程に影響大?(長時間シミュレーション必要)

JHPCN 学際大規模情報基盤共同利用・共同研究拠点 第9回シンポジウム

Japan High Performance Computing and Networking plus Large-scale Data Analyzing and Information Systems

2017年 7月13日,14日

THE GRAND HALL(品川)