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Abstract

Multigrid methods play a critical role in enabling large-scale simulations on modern su-

percomputers. ’Innovative Multigrid Methods III’ was launched in FY2023 as a three-year

project. In the second year of the project, we made significant progress in PinT-related

studies and also advanced research in performance analysis of coarse grid solver in Multigrid

methods.

1 Basic information

1.1 Collaborating JHPCN centers

• Tohoku University

• The University of Tokyo

• Nagoya University

• Kyoto University

• Kyushu University

1.2 Theme area

• Large-scale computational science area

1.3 Project members and their roles

Research items (1), (2) and (3) are described

in Section 2.

Akihiro Fujii3 : (1)

Kengo Nakajima2,4 :(CoPI) (3),(1)

Matthias Bolten8 : (1),(2)

Takeshi Iwashita1 : (1),(2)

Akihiro Ida10 : (2)

Masatoshi Kawai6 : (2)

Satoshi Ohshima5 : (1),(3)

Tetsuya Hoshino6 : (2),(3)

Toshihiro Hanawa2 : (2),(3)

Gerhard Wellein9 : (3)

Kenji Ono5 : (1)

Ryo Yoda8 : (1),(3)

Yasuhito Takahashi7 : (1)

Yen-Chen Chen11 : (1)

Martin Schreiber12 : (3)

Christie Alappat9 : (3)

Teruo Tanaka3 : (1)

Georg Hager9 : (3)

Ayesha Afzal9 : (3)

Bole Ma9 : (3)

1: Kyoto U., 2: U. Tokyo, 3: Kogakuin U., 4: RIKEN

R-CCS, 5: Kyushu U., 6: Nagoya U., 7: Doshisha

U. 8: U. Wuppertal*, 9: FAU*, 10: JAMSTEC, 11:

KIT* 12: the Université Grenoble Alpes, *:Germany

2 Purpose and Significance of the

Research

We are planning to conduct research and de-

velopment on the following three items:

(1) Research and development of funda-

mental algorithms in multigrid methods
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(2) Parallel reordering methods

(3) Performance evaluation models for par-

allel multigrid procedures

(1) includes stabilization method for AMG

solvers by specifying error component to be

transferred to the coarse levels, and paral-

lel time integration (PinT) algorithms. In

(2), we study reordering technique on un-

structured problem domain. (3) deals with

performance evaluation models for multigrid

solvers on supercomputers.

This year is the second year of a three-

year plan. The goal is to increase the num-

ber of research papers and, at the same time,

to concretize the development details for the

release of the code.

3 Significance as JHPCN Joint

Research Project

Multigrid method is scalable and used in

many fields. It is known as one of the most

efficient linear solvers. It can also be applied

to parallel time integration problems, which

exploits parallelism in time dimension. Our

research project has original codes and algo-

rithms. Therefore, research papers and codes

from the project will enhance the efficiency

of the multigrid solver, and will help many

researchers exploit parallelism in time direc-

tion. Our research focuses on hierarchical

algorithms and their performance on super-

computers. Thus, availability of supercom-

puters with different kinds of architectures

helps us verify the codes we are develop-

ing. In addition, a JHPCN joint research

project offers collaborative research opportu-

nity with JHPCN members who have exper-

tise knowledge in various application fields.

Our project members include international

experts in Germany, U.S., France and Japan

on multigrid methods and PinT. We are sure

that this JHPCN joint research project pro-

motes the international collaborative activity

with JHPCN members.

4 Outline of Research Achievements

until FY2023 (Only for continuous

projects)

We conducted our research project “In-

novative Multigrid II” from FY2020 to

FY2022. While the project yielded substan-

tial progress, several key research challenges

remained unresolved. To address these is-

sues more systematically, we restructured the

research themes into three focused areas as

described in Section 2, and launched a new

three-year initiative, “Innovative Multigrid

III” starting in FY2023.

We were able to publish a number of re-

search papers on topics such as MG, AMG,

and PinT solvers. On the other hand,

progress on performance model was limited

and remains to be further addressed.

5 Details of FY2024 Research

Achievements

This section highlights three research

projects presented during the FY2024:

• Numerical Analysis of a Parallel-in-Time

Method for Oseen Problems

• Fundamental Studies on Efficient Sim-

ulation of the Overdamped Langevin

Equation
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• Impact of Thread Count on the Coarse

Grid Solver in MGCG Methods

Numerical Analysis of a Parallel-in-

Time Method for Oseen Problems

Constructing stable coarse temporal lev-

els in parallel-in-time (PinT) methods re-

mains challenging, particularly for hyper-

bolic problems. However, a coarse-grid opti-

mization method based on the spectral differ-

ence minimization has already yielded near-

optimal coarse-grid operators and achieved

good convergence for scalar advection prob-

lems. We expand this to coupled system

equations: time-depenent Oseen problems,

which is a linearized form of Navier-Stokes

equations. The formulation assumes Runge-

Kutta time integration within a projection

framework and periodic boundaries; nev-

ertheless, it extends naturally to Dirichlet

boundaries, where it retains good conver-

gence.

R. Yoda et. al. reports spectral analy-

sis for convergence rates and parallel per-

formance of proposed method [1]. Fig. 1

and 2 presents the estimated convergence

rates ∥Ek∥ obtained from the convergence

analysis of MGRIT for coupled system equa-

tions. While the convergence rate of the con-

ventional rediscretization method was 0.743,

our proposed method achieved an good con-

vergence rate of 0.098. Fig. 3 shows the re-

sults of the parallel test. We have demon-

strated good strong scaling performance,

achieving faster speeds than sequential time

stepping with 64 processors. These results

indicate that our method is highly effective

for practical large-scale engineering simula-

tions.
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Fig. 1 Convergence analysis (conventional)
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Fig. 2 Convergence analysis (proposed)

Fundamental Studies on Effi-

cient Simulation of the Overdamped

Langevin Equation

A.Fujii et.al. investigates the method

for expanding the timestep width for over-

damped Langevin equation.

The overdamped Langevin equation is

widely used in molecular dynamics simula-

tions, particularly for biomolecules such as

proteins. Typically, an explicit integration
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Fig. 3 Strong scaling experiments

scheme is employed with a time step of ap-

proximately 10−9 seconds, resulting in high

computational costs. Therefore, accelerating

these simulations remains a critical challenge.

In this study, we focus on a semi-implicit

scheme with pseudo-random forces[2], which

enables larger time step sizes for the over-

damped Langevin equation, and we analyze

its numerical characteristics. From the per-

spective of time parallelization, establishing

a method that allows stable and accurate

simulation with larger time steps is essential,

and our evaluation provides a foundation for

such approaches.

The method under consideration corrects

the stochastic forces from the solvent by

adding pseudo-random forces, allowing time

evolution with larger steps. This approach

corresponds to applying Newton’s method

once per time step and requires solving a lin-

ear system of equations. To compute the

pseudo-random forces, a Cholesky decompo-

sition of the coefficient matrix is used.

We first examined how changing the order-

ing of particles affects the Cholesky decom-

position and the generated pseudo-random

forces. Our analysis showed that the accu-

racy of the solution is not affected by the

ordering, confirming its robustness.

Furthermore, since the cost of Cholesky

decomposition increases significantly with

matrix size, we explored the feasibility of

using incomplete Cholesky decompositions.

In particular, we analyzed which eigen-

value components are essential for computing

pseudo-random forces. The results indicate

that for simulations with larger time steps,

accurately capturing the low eigenvalue com-

ponents is sufficient.

Future work will focus on developing cost-

effective incomplete Cholesky decomposi-

tion techniques that can faithfully reproduce

the influence of low eigenvalue components,

thereby improving the efficiency of large time

step simulations.

Impact of Thread Count on the

Coarse Grid Solver in MGCG Methods

In the previous works by authors using

Wisteria/BDEC-01 (Odyssey) [3], the same

number of threads (=12) was applied at each

level of the parallel multigrid method, in-

cluding the coarse grid solver. However,

this study also examined scenarios where

the number of threads varied by level. In

the multigrid method, the levels are defined

such that the finest grid is at level-1, and

the level number increases as the grid be-

comes coarser. When dealing with large-

scale problem sizes per node, the benefits

of parallelization using OpenMP and MPI

are significant. However, for smaller-scale

ones, parallelization can sometimes lead to
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a decrease in computational performance. In

such cases, strategies to maintain computa-

tional efficiency include reducing the num-

ber of threads, or even disabling paralleliza-

tion for OpenMP [4]. In the present work,

we evaluate the effects of thread number for

the smoother in parallel multigrid procedure,

and the coarse grid solver, as follows:

T-1: In the smoother for parallel multi-

grid procedure, the number of threads

dedicated to computation was set to 1

or half of the original thread number at

some levels.

T-2: The number of threads for the

coarse grid solver was set to 1 at some

levels.

We considered the best cases for manual-

scheduling (xy-man-a, and xy-man-b) for

these evaluations for T-1 and T-2. Figure

4 and Table 1 show configurations of each

case in T-1. Each case is defined as xy-z-

k, where k is the number of idle cores in

each case. Because we consider only manual

scheduling (man-a, man-b) as the schedul-

ing policy in T-1 and T-2, one core is dedi-

cated to halo communication including copy.

Therefore, thread number of computation for

SpMV and forward/backward substitutions

(only for man-b) is 2 for x03-z, 5 for x06-z,

and 11 for x12-z, respectively. In each Pro-

cess/Thread Allocation (HB 3× 16, HB 6×
8, and HB 12× 4), 2 types of configurations

are considered in the smoother of the parallel

multigrid procedures at each level. The first

type is that half the cores are available for

SpMV, and forward/backward substitutions

compared to the original configuration, and

the other is that only a single core is available

for such computations. x06-z-2 and x12-z-5

are in the 1st type, while x06-z-4 and x12-z-

10 are in the 2nd type. x03-z-1 can be con-

sidered as both types. Allocations of threads

at each level are defined as shown in Table 2.

lev-j+ means that, xy-z with original number

of threads is applied to level-(j-1) or lower

(finer), while xy-z-k is applied to level-j or

higher (coarser). If we apply xy-z-k, same

number of k is applied to each level. In T-1,

128 nodes of Odyssey have been applied.

Fig. 4 configurations of Idle Cores for T-1

Table 1 Cases in T-1 (xy-z-k)

Table 3 shows configurations of each case
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Table 2 Thread Allocation at Each Level

of Parallel Multigrid Procedures in T-1

in T-2. In T-2, 128 nodes and 512 nodes

are applied, and only large (l) and small (s)

cases are considered. Allocations of threads

at each level of coarse grid solver are defined

as shown in Table 4 Each level of the coarse

grid solver is defined as levelC. levC-j+ in

Table 4 means that, multi-threaded paral-

lel coarse grid solver with original number

of threads is applied to levelC-(j-1) or lower

(finer), while single thread solver is applied

to levelC-j or higher (coarser).

Table 3 Cases in T-2(xy-z-p)

Table 4 Number of Threads for Coarse

Grid Solver at Each Level (LevelC) in T-2

Each of Fig. 5 (a,b,c) shows effects of

thread counts for smoother in MGCG at each

level (T-1). Elapsed computation time for

MGCG solver is normalized by that of the

cases without idle cores, such as x03-z, x06-z,

and x12-z in Table 1. The impact of varying

the number of threads is generally minimal.

Except for the finest grid level, changes in

the number of threads resulted in only slight

variations in computation time. For smaller-

scale problems (sy-man-a, sy-man-b), reduc-

ing the number of threads at finer grid lev-

els does not significantly affect computation

time.

Figure 6 shows effects of thread num-

ber for coarse grid solver at each level (T-

2). Elapsed computation time for MGCG

solver is normalized by that for the origi-

nal MGCG solvers with fully multi-threaded

parallel coarse grid solver at all levels, such

as xy-man-a, and xy-man-b. The impact

of varying the number of threads is gener-

ally minimal. For problem sizes for coarse

grid solver below 104, setting the number of

threads to one across all levels did not re-

sult in significant differences in computation

time, as shown in Fig. 6 and Fig. 7. For

problem sizes exceeding 104, thread paral-

lelism was necessary at the finest grid level

(levelC=1), but for coarser levels, setting the

number of threads to one had no impact on

computation time. The problem size for the

coarse grid solver is determined by the to-

tal number of MPI processes, but it can also

increase significantly depending on the level

at which the switch to the coarse grid solver

occurs in the CGA.
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Fig. 5 Effects of Thread Counts for

Smoothers in Parallel Multigrid Proce-

dures (T-1): Elapsed Computation Time

for MGCG (a) HB 3 × 16 (normalized

by elapsed time for MGCG in s03-man-

b, m03-man-a, l03-man-a), (b) HB 6 × 8

(s06-man-b, m06-man-b, l06-man-b), (c)

HB 12 × 4 (s12-man-b, m12-man-b, l12-

man-b)
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6 Self-review of Current Progress and

Future Prospects

While significant progress was made on PinT

and performance analysis, advancements in

performance modeling were limited. With

some adjustments to our research direction,

we plan to move forward this fiscal year with

a renewed focus, also taking GPU environ-

ments into consideration.


