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Abstract

We have developed (physics-informed) Machine Learning methods to study complex

Soft/Active matter systems, which are characterized by hierarchy of length- and time-scales

that makes them incredibly challenging to study. We have focused on three basic themes:

(A) Polymer Rheology, (B) Stokes Flows, and (C) Optimal Control of Active Systems. (A)

We used ML to infer the relationship between the microscopic and macroscopic degrees of

freedom of entangled polymer melts, this includes, among others, learning the constitutive

relation for the stress, as well as inferring the molecular weight distribution from rheologi-

cal data. (B) We develeoped a probabilistic inference framework for Stokes flow problems,

capabable of inferring the flow solution given noisy and/or partial data. (C) We developed

a reinforcement learning protocol to teach swimmers how to navigate complex flows, as well

as infer the (hidden) utility of rational agents.

1 Basic information

1.1 Collaborating JHPCN centers

• The University of Tokyo

• Kyoto University

1.2 Theme area

• Large-scale computational science area

1.3 Project members and their roles

• J. J. Molina: ML for Soft Matter.

• T. Iwashita: HPC support.

• H. Shiba: support.

• T. Taniguchi: MSS for polymers.

• R. Yamamoto: Soft Matter theory.

• S. Miyamoto: ML/MSS for polymers.

• T. Sato: MSS for polymers.

• S. K. Schnyder: ML/Optimal control.

• D. Mayank: Polymer simulations.

• M. S. Turner: Soft Matter Theory.

• A. C. Meneses: Active Matter.

• M. Lynch: ML/Optimal control.

• Y. Ueno: ML for polymers.

• G. Iwami: Polymer simulations.

• S. Turley: ML for active Matter.

2 Purpose and Significance of the

Research

Soft Matter systems (e.g., polymers, colloids,

biofilms) are fundamental to modern indus-

try. Typically, these systems possess a hier-

archy of length- and time-scales that provide

interesting material properties, while making

them incredibly challenging to study. The-

oretical approaches are limited to idealized

systems, leaving computer simulations as the
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preferred approach. However, this still re-

quires vast computational resources. There is

now a growing interest to use Machine Learn-

ing (ML), either to complement existing ap-

proaches, or to replace them altogether. The

goal of this project is to develop ML meth-

ods to study characteristic Soft Matter sys-

tems. We considered three main themes: (A)

Polymer rheology, (B) Stokes Flows, and (C)

Optimal Control.

(Theme A) Polymer materials are one

of the fundamental building blocks of mod-

ern industrialized societies. However, there

is an urgent need to develop more efficient

and sustainable materials. The current state-

of-the-art method to study these systems re-

lies on Multi-Scale-Simulations (MSS), which

directly couple micro/macro degrees of free-

dom, but these are too expensive. To ad-

dress this, we have developed a method to

learn the constitutive relation for the stress

from microscopic data. We have also devel-

oped a method to solve the inverse problem

of inferring the microscopic properties given

macroscopic data. This year we worked to

improve the learning, and focused on solving

the inverse problem (e.g., flow optimization,

parameter inference).

(Theme B) Stokes flows, relevant to

flows at small scales or high-viscosity flu-

ids (e.g., biological flows or high-molecular

weight polymer melts), are ubiquitous in life-

sciences. While several numerical methods

exist for these flow problems, they are not

easily applied to experimental setups, where

incomplete and noisy data is the norm. Thus,

we have developed a physics-informed proba-

bilistic ML framework that allows us to solve

arbitrary Stokes flow problems. This year we

worked to improve the method, to be able to

analyze large scale 3D systems.

(Theme C) Active systems, composed

of “agents” capable of responding to their

environment to maximize their utility, are

widespread in biological and social sys-

tems. We have considered two such sys-

tems: (1) “smart” microswimmers navigat-

ing non-uniform flows and (2) “rational” in-

dividuals self-distancing during an epidemic.

For (1), we developed a reinforcement learn-

ing scheme to teach swimmers how to nav-

igate using local hydrodynamic signals, for

(2) we developed a learning method to in-

fer the hidden utility. This year, we focused

on (1) cargo-transport and (2) improving the

robustness of the model and the learning.

3 Significance as JHPCN Joint

Research Project

The goal of this project is to develop ML

methods to simulate/analyze complex Soft

Matter systems, with a focus on (A) ML for

polymer rheology, (B) ML for Stokes flows,

(C) ML for optimal control. The complexity

of these systems necessarily requires large-

scale computing resources. For example, (A)

the full MSS for polymer melts flows can re-

quire simulating up to ≃ 108 polymer chains;

(B) the Stokes flow inference requires exact

Gaussian Process (GP) regression on ≃ 106

training points; (C) the flow navigation re-

quires training through a hydrodynamic sim-

ulation and the utility inference relies on a set

of nested neural networks.
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4 Outline of Research Achievements

until FY2023 (Only for continuous

projects)

(Theme A) We developed a Gaussian Pro-

cess (GP) regression scheme to learn the

constitutive relation for the stress of entan-

gled polymer melts (within the Doi-Takimoto

Slip-Link model) and used it to predict the

flow behavior under varying conditions. The

constitutive relation was assumed to be a

function of the stress σ and the strain rate

D = (κ + κT )/2 (κ = ∇u the velocity

gradient), i.e., σ̇ = σ̇(σ,D). In particular,

the method was extended to allow for multi-

deformation mode flows and to satisfy the

principle of material objectivity. Compar-

isons with full MSS showed very good agree-

ment at a fraction of the numerical cost, with

the results obtained from the learned con-

stitutive relation showing drastically reduced

noise levels.

(Theme B) We developed a physics-

informed Stokes flow inference framework ca-

pable of inferring the flow solution of ar-

bitrary Stokes problems given noisy and/or

partial data. In particular, our GP regression

approach is able to exactly encode the un-

derlying physical laws, i.e, the Stokes (force-

balance) f = ∇p−µ∇2u = 0 and continuity

s = ∇ · u = 0 equations. We obtain the so-

lution in the form of a (posterior) probabil-

ity distribution for the velocity and pressure,

conditioned on all prior information (i.e., the

physical laws, boundary conditions, and any

measured data).

(Theme C) We developed a Reinforcement

Learning protocol to teach swimmers to nav-

igate non-uniform flow fields using purely lo-

cal hydrodynamic signals. We trained (1) in-

dividual swimmers to navigate zig-zag shear

flows, and (2) a collection of swimmers to

produce non-trivial collective motion.

5 Details of FY2024 Research

Achievements

5.1 ML for Polymer Rheology

We have developed a GP based ML method

to solve the (inverse) problem of inferring the

molecular weight distribution (MWD) of a

linear polydisperse polymer melt from rhe-

ological data, as given by stress relaxation

curves G(t), which are easy to measure ex-

perimentally (in contrast to the MWD them-

selves). To account for multi-modal solu-

tions, where distinct polymer compositions

can give rise to indistinguishable relaxation

curves, we estimate the full posterior distri-

bution using Hamiltonian Monte-Carlo sim-

ulations. For simplicity, we have consid-

ered a heterogeneous mixture of N distinct

species of Rouse chains, which differ only in

the length of the chains. Training data for

G(t) was generated from the known analyti-

cal solution given the weight/length (i.e., the

number of beads in a chain) distribution fi

(
∑N

i=1 fi = 1).

Let x = (t, fi) denote the model input,

with G(x) the model output. The solution

to the inverse problem is given by the poste-

rior probability distribution p(x⋆|G⋆,x,G),

with x and G the training data sets, x⋆ and

G⋆ the (unknown) test data/predictions.

Using Bayes’ theorem this distribution
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can be shown to be proportional to∫
dΘp(G⋆|Θ,x⋆,x,G)p(G|Θ,x)p(Θ)p(x⋆),

where p(G⋆|Θ,x⋆,x,G) is the GP-posterior

(i.e., the learned mapping between in-

put/output), p(G|Θ,x) is the GP-prior for

the stress-relaxation function, and p(Θ) and

p(x⋆) are suitable priors for the GP hyper-

parameters Θ and the number fraction

f .

Fig. 1 Number fraction inference for a

denary system of heterogeneous Rouse

chains. Y. Ueno, Mater Thesis, Kyoto

University (2025).

We discuss the results for the denary N =

10 case (the largest considered), where the

shortest chain had N = 8 beads, and the

longest chain N = 4096. To obtain a uni-

form sampling of training data points we

sampled 500 sets of f using a Centroidal

Voronoi Tessellation (CVT) and computed

the corresponding G(t) from the analytical

solution to the Rouse model. The relation

between f and G(t) is learned using a GP

regression, the posterior distributions for f⋆

given G⋆ is sampled using the NUTS Hamil-

tonian Monte-Carlo method (as implemented

in PYMC). The predicted distribution, as a

function of the number of beads in a chain is

given in Fig. 1. While the variance is rela-

tively high, the mean prediction is in excel-

lent agreement with the true value. To ver-

ify the applicability to experimental data, we

studied the scalability of the method, by esti-

mating how the cost of the Bayesian inference

scales with the number of training data sets,

as well as with the dimensions of the prob-

lem (i.e., the number of components). Re-

sults were obtained by performing each infer-

ence ten times for random training and test

data sets. The calculation time is seen to

scale linearly, both with the number of train-

ing data sets, as with the number of dimen-

sions/components d (Fig. 2).

Finally, we have also performed systematic

studies to understand the remarkable me-

chanical properties of natural rubber (NR),

as compared to synthetic rubber. This has

been attributed to the terminal groups of

the polymer chains, and the presence of non-

rubber components (NRCs), e.g. proteins,

lipids, fatty acids, and hydroxy impurities.

Using all-atom molecular dynamics simula-

tions, we investigated interactions between

NRCs and terminal groups. From an anal-

ysis of the equilibrium properties; e.g., end-

to-end distance, radius of gyration, rota-

tional relaxation time, stress-stress autocor-

relation, diffusion coefficient, radial distribu-

tion function, we found that NRCs preferen-

tially interact with terminal groups, signifi-
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cantly slowing chain dynamics and promot-

ing stable NRC ‒ terminal clusters. Fatty

acids and hydroxy impurities form star-like

physical junctions mediated by hydrogen

bonds, restricting polymer mobility. These

findings provide molecular-level insight into

how NRCs enhance the mechanical strength

of NR through intermolecular interactions

and junction formation (M. Dixit and T.

Taniguchi, ACS Applied Engineering Mate-

rials 3, 337, 2025; M. Dixit and T. Taniguchi,

ACS Polymer Au 4, 273, 2024).

5.2 ML for Stokes Flows

Our proposed probabilistic inference method

relies on a physics-informed GP regression

that directly incorporates the Stokes and

continuity equations into the GP kernel.

The method works equally well on 2D or

3D systems. However, exact regression re-

quires us to evaluate large matrix(inverse)-

vector products. Using a standard Cholesky-

based decomposition limits the calculations

to relatively small systems (≃ 103 train-

ing points), making it unusable for ex-

perimental 3D flow data. To overcome

this problem, the recommended approach is

to use a Black-Box-Matrix-Matrix (BBMM)

method (as pioneered by GPyTorch). How-

ever, we were unable to achieve the desired

speedup/performance (most likely due to the

non-sparse nature of the resulting Kernel ma-

trices) and have yet to find a suitable replace-

ment method.

5.3 ML for Optimal Control

We have extended our reinforcement learn-

ing method to consider the task of transport-

ing cargo through a non-uniform flow field

Fig. 2 Calculation time as a function of

(top) number of training data sets and (b)

number of components or dimensions d;

running on a single NVIDIA A100 GPU

(Wisteria). Y. Ueno, Master Thesis, Ky-

oto University (2025).

using only local hydrodynamic signals as a

guide. For this, we continue to use Deep

Q-Learning (via PyTorch) to learn the op-

timal action response, coupled to direct nu-

merical simulations (using the KAPSEL col-

loidal simulator) to resolve the fluid/particle
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Fig. 3 Simulation trajectory for a

“smart” (green) and “naive” (blue) cargo-

towing swimmer tasked with moving

in the (left) shear-gradient and (right)

shear-flow directions; together with an

inert chain (red). Adapted from K.

Sankaewtong et at., Phys. Rev. Res. 6,

033305, 2024 (CC BY 4.0).

hydrodynamic coupling. For the active

cargo-towing particles we use the canoni-

cal squirmer model, while the cargo itself

consists of inert tracer/colloidal particles at-

tached to the swimmer by harmonic springs

(see Fig.3). The “smart” swimmer parti-

cle is endowed with sensors on its surface,

which allow it to measure the local hydrody-

namic forces. This “smart” swimmer is able

to tune its swimming velocity, as well as it’s

swimming direction, in response to these hy-

drodynamic signals. We successfully trained

such a cargo-towing swimmer to navigate a

zig-zag shear flow; it is able to effectively

move in both the shear-gradient and shear-

flow directions. Performance is dramatically

improved compared to “naive” cargo-towing

swimmers, as well as inert chains (Fig. 3).

Surprisingly, we found that the cargo-towing

swimmers outperform single swimmers when

trained to swim in the shear-flow direction.

We also find that pullers outperform neu-

tral and pusher-type swimmers, regardless of

the cargo-load (K. Sankaewtong et al., Phys.

Rev. Res. 6, 033305, 2024).

In addition, we have also considered

the optimal control/ game theory problems

that explains the behavior of rational/selfish

agents socially distancing during an epi-

demic. To start, we have considered a sim-

ple compartmental disease model, e.g., the

Susceptible-Infected-Recovered (SIR) model,

within a mean-field description in which all

individuals are identical. The disease infec-

tivity is used as a proxy for individual behav-

ior, which serves as the control variable that

individuals can tune to maximize (minimize)

their total utility (loss). Given the form of

the utility function, it is straightforward to

derive the appropriate Euler-Lagrange equa-
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Fig. 4 Effective utility Ṽ as a function of

the behavior κ, for individuals socially dis-

tancing during an epidemic. The learned

NN prediction is compared to the true

function that determines the behavior.

tions for this constrained optimization prob-

lem. However, solving the inverse problem

is incredibly challenging. We have identified

an analytic solutions to the direct problem

(Schnyder et al., PNAS 122, e2409362122,

2025), which has allowed us to gain a much

deeper understanding of the model. We

have also investigated the role of empathy

in the disease outcome, and found that even

a small degree of empathy can have large ef-

fects on the population and disease dynam-

ics. Mainly, we have developed a physics-

informed Neural-Network (PINN) that incor-

porates both the physical constraints (i.e.,

the Lagrange/Hamiltonian equations of mo-

tion), as well as the game-theoretic con-

straints, into the structure of the networks.

Using this approach, we have successfully in-

ferred hidden utilities (Fig. 4) from behavior

data. Unfortunately, this inference requires

information on the Lagrange multipliers used

to constrain the disease dynamics. We have

investigated how to accelerate the training,

as well as how to completely eliminate the

unwanted (experimentally unknown) degrees

of freedom from the learning.

6 Self-review of Current Progress and

Future Prospects

For theme (A), we focused on understanding

the coupling between micro/macro proper-

ties of polymer systems. This included tack-

ling the inverse problem of inferring micro-

scopic data given macroscopic information

(e.g., molecular weight distributions from

stress relaxation curves), as well as improv-

ing our knowledge of the microscopic origins

of the enhanced properties of natural rub-

ber. Our efforts to improve the learning of

the constitutive relations are still ongoing, in

particular, we must still improve the relia-

bility of the ML predictions, as well as the

performance of our MSS code (e.g., by effi-

ciently parallelizing the calculation of poly-

mer chain entanglements on GPUs). Like-

wise, for theme (B) we are still in the pro-

cess of improving the efficiency and scalabil-

ity of the inference beyond 103 − 104 train-

ing points. For theme (C), we extended our

Reinforcement Learning method to consider

“smart” cargo-towing swimmers. We also

improved upon our optimal control/game-
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theory model of social distancing during an

epidemic, though our solution of the inverse

problem still requires some knowledge of the

(hidden) Lagrange multipliers.

Our future prospects are clear, as we have

shown that the methods we developed work

as intended. From this point, we will work

on optimizing them. For theme (A) this

involves improving the predictive capabil-

ities of the learned constitutive relations,

as well as developing a fully-differentiable

flow-solver. For theme (B) we need to

find a more efficient method to perform the

matrix(inverse)-vector products for our cus-

tom physics-informed Gaussian Process ker-

nels. For theme (C), we will focus on the

(inverse) optimal control problem, to develop

physics-informed neural networks that can be

trained solely on observable behavioral data.


